This text advances fundamental knowledge in modeling in vitro tissues/organs as an alternative to 2D cell culture and animal testing. Prior to engineering in vitro tissues/organs,the descriptions of prerequisites (from pre-processing to post-processing) in modeling in vitro tissues/organs are discussed. The most prevalent technologies that have been widely used for establishing the in vitro tissue/organ models are also described, including transwell, cell spheroids/sheets, organoids, and microfluidic-based chips. In particular, the authors focus on 3D bioprinting in vitro tissue/organ models using tissue-specific bioinks. Several representative bioprinting methods and conventional bioinks are introduced. As a bioink source, decellularized extracellular matrix (dECM) are importantly covered, including decellularization methods, evaluation methods for demonstrating successful decellularization, and material safety. Taken together, the authors delineate various application examples of 3D bioprinted in vitro tissue/organ models especially using dECM bioinks.
Nanotechnology for Rural Development is designed to present nanotechnology-based solutions to the challenges faced by rural populations, particularly in underdeveloped and developing countries. The book focuses on agriculture, biomass management, food processing and water management, in terms of its purification and decontamination. The treatment of wastewater and the harnessing of renewable energy are also covered. In addition, the book deals with the application of nanotechnology in the areas of consumer goods, such as textiles, ceramics, food processing and packaging, and other related spheres. The book provides information on the green synthesis of nanomaterials, using prevalent natural resources and their applications for textiles, ceramics, portiere, and food packaging. It also addresses low-cost solutions using materials such as biomass waste for water purification and decontamination. For example, lignocellulosic biomass can be converted into nutrient adsorbents, energy, fuel and storage. Above all, it protects agriculture crops from insects and other pests, and produces quality products in high yields. This volume offers insight into the intricacies of the problems faced by large populations living in rural areas, particularly in underdeveloped and developing countries. It also discusses the natural renewable resources available locally and how nanotechnology can best use them to increase the quality and yield of agricultural products, as well as how to engage the population, specifically women, in gainful productive activities. - Outlines the major nanomaterial types used for suitable agricultural systems - Shows how nanotechnology is being used to create more effective food processing and energy harvesting systems - Assesses the major challenges in rolling out nanotechnology-based agricultural systems in developing countries
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.