This book is based on the experience of teaching the subject by the author in Russia, France, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics on tensors, Riemannian geometry and geometric approach to partial differential equations. Application of approximate transformation groups to the equations of general relativity in the de Sitter space simplifies the subject significantly.
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author?s own theoretical developments. The book ? which aims to present new mathematical curricula based on symmetry and invariance principles ? is tailored to develop analytic skills and ?working knowledge? in both classical and Lie?s methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author?s extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collge de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R.van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in - gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in pack ing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity.
This book is based on the experience of teaching the subject by the author in Russia, France, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics on tensors, Riemannian geometry and geometric approach to partial differential equations. Application of approximate transformation groups to the equations of general relativity in the de Sitter space simplifies the subject significantly.
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book — which aims to present new mathematical curricula based on symmetry and invariance principles — is tailored to develop analytic skills and “working knowledge” in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collège de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.
Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R.van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in - gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in pack ing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-B�lund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.