At a May 1981 "Proseminar in Space History'' held at the Smithsonian Institution's National Air and Space Museum (NASM) in Washington, DC, historians came together to consider the state of the discipline of space history. It was an historic occasion. The community of scholars interested in the history of spaceflight was not large; previously, well-meaning but untrained aficionados consumed with artifacts had dominated the field, to the exclusion of the larger context. At a fundamental level, this proseminar represented a "declaration of independence'' for what might be called the "new aerospace history.'' In Retrospect, it may be interpreted as marking the rise of space history as a recognizable subdiscipline within the field of U.S. history. Bringing together a diverse collection of scholars to review the state of the art in space history, this proseminar helped in a fundamental manner to define the field and to chart a course for future research. Its participants set about the task of charting a course for collecting, preserving, and disseminating the history of space exploration within a larger context of space policy and technology. In large measure, the course charted by the participants in this 1981 proseminar aided in advancing a very successful agenda of historical research, writing, and understanding of space history. Not every research project has yielded acceptable results, nor can it be expected to do so, but the sum of the effort since 1981 has been impressive. The opportunities for both the exploration of space and for recording its history have been significant. Both endeavors are noble and aimed at the enhancement of humanity. Whither the history of spaceflight Only time will tell. But there has been an emergent "new aerospace history'' of which space history is a central part that moves beyond an overriding concern for the details of the artifact to emphasize the broader role of the spacecraft. More importantly, it emphasizes the whole technological system, including not just the vehicle but also the other components that make up the aerospace climate, as an integral part of the human experience. It suggests that many unanswered questions spur the development of flight and that inquisitive individuals seek to know that which they do not understand.
This report addresses the transition of research satellites, instruments, and calculations into operational service for accurately observing and predicting the Earth's environment. These transitions, which take place in large part between NASA and NOAA, are important for maintaining the health, safety, and prosperity of the nation, and for achieving the vision of an Earth Information System in which quantitative information about the complete Earth system is readily available to myriad users. Many transitions have been ad hoc, sometimes taking several years or even decades to occur, and others have encountered roadblocksâ€"lack of long-range planning, resources, institutional or cultural differences, for instanceâ€"and never reached fruition. Satellite Observations of Earth's Environment recommends new structures and methods that will allow seamless transitions from research to practice.
The goal of planetary protection is to control, to the degree possible, the biological cross-contamination of planetary bodies. Guidelines developed by the Committee on Space Research (COSPAR) are used by all spacefaring nations to guide their preparations for encounters with solar system bodies. NASA's Science Mission Directorate has convened the Planetary Protection Independent Review Board (PPIRB) to consider updating the COSPAR guidelines given the growing interest from commercial and private groups in exploration and utilization of Mars and other bodies in space. At the request of NASA, this publication reviews the findings of the PPIRB and comments on their consistency with the recommendations of the recent National Academies report Review and Assessment of the Planetary Protection Policy Development Processes.
The American workforce is changing, creating new challenges for employers to provide occupational health services to meet the needs of employees. The National Aeronautics and Space Administration (NASA) workforce is highly skilled and competitive and employees frequently work under intense pressure to ensure mission success. The Office of the Chief Health and Medical Officer at NASA requested that the Institute of Medicine review its occupational health programs, assess employee awareness of and attitude toward those programs, recommend options for future worksite preventive health programs, and ways to evaluate their effectiveness. The committee's findings show that although NASA has a history of being forward-looking in designing and improving health and wellness programs, there is a need to move from a traditional occupational health model to an integrated, employee-centered program that could serve as a national model for both public and private employers to emulate and improve the health and performance of their workforces.
The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.
NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.
NASA operates a large number of space science missions, approximately three-quarters of which are currently in their extended operations phase. They represent not only a majority of operational space science missions, but a substantial national investment and vital national assets. They are tremendously scientifically productive, making many of the major discoveries that are reported in the media and that rewrite textbooks. Extending Science â€" NASA's Space Science Mission Extensions and the Senior Review Process evaluates the scientific benefits of missions extensions, the current process for extending missions, the current biennial requirement for senior reviews of mission extensions, the balance between starting new missions and extending operating missions, and potential innovative cost-reduction proposals for extended missions, and makes recommendations based on this review.
Astrobiology is a scientific discipline devoted to the study of life in the universe - its origin, evolution, distribution, and future. In 1997, NASA established an Astrobiology program (the NASA Astrobiology Institute - NAI) as a result of a series of new results from solar system exploration and astronomical research in the mid-1990s together with advances in the biological sciences. To help evaluate the NAI, NASA asked the NRC to review progress made by the Institute in developing the field of astrobiology. This book presents an evaluation of NAI's success in meeting its goals for fostering interdisciplinary research, training future astrobiology researchers, providing scientific and technical leadership, exploring new research approaches with information technology, and supporting outreach to K-12 education programs.
The astronomy science centers established by the National Aeronautics and Space Administration (NASA) to serve as the interfaces between astronomy missions and the community of scientists who utilize the data have been enormously successful in enabling space-based astronomy missions to achieve their scientific potential. These centers have transformed the conduct of much of astronomical research, established a new paradigm for the use of large astronomical facilities, and advanced the science far beyond what would have been possible without them. Portals to the Universe: The NASA Astronomy Science Centers explains in detail the findings of this report.
Modern science is ever more driven by computations and simulations. In particular, the state of the art in space and Earth science often arises from complex simulations of climate, space weather, and astronomical phenomena. At the same time, scientific work requires data processing, presentation, and analysis through broadly available proprietary and community software.1 Implicitly or explicitly, software is central to science. Scientific discovery, understanding, validation, and interpretation are all enhanced by access to the source code of the software used by scientists. This report investigates and recommends options for NASA's Science Mission Directorate (SMD) as it considers how to establish a policy regarding open source software to complement its existing policy on open data. In particular, the report reviews existing data and software policies and the lessons learned from the implementation of those policies, summarizes community perspectives, and presents policy options and recommendations for implementing an open source software policy for NASA SMD.
NASA's Science Mission Directorate (SMD) currently operates over five dozen missions, with approximately two dozen additional missions in development. These missions span the scientific fields associated with SMD's four divisionsâ€"Astrophysics, Earth Science, Heliophysics, and Planetary Sciences. Because a single mission can consist of multiple spacecraft, NASA-SMD is responsible for nearly 100 operational spacecraft. The most high profile of these are the large strategic missions, often referred to as "flagships." Large strategic missions are essential to maintaining the global leadership of the United States in space exploration and in science because only the United States has the budget, technology, and trained personnel in multiple scientific fields to conduct missions that attract a range of international partners. This report examines the role of large, strategic missions within a balanced program across NASA-SMD space and Earth sciences programs. It considers the role and scientific productivity of such missions in advancing science, technology and the long-term health of the field, and provides guidance that NASA can use to help set the priority of larger missions within a properly balanced program containing a range of mission classes.
Over the past 5 years or more, there has been a steady and significant decrease in NASA's laboratory capabilities, including equipment, maintenance, and facility upgrades. This adversely affects the support of NASA's scientists, who rely on these capabilities, as well as NASA's ability to make the basic scientific and technical contributions that others depend on for programs of national importance. The fundamental research community at NASA has been severely impacted by the budget reductions that are responsible for this decrease in laboratory capabilities, and as a result NASA's ability to support even NASA's future goals is in serious jeopardy.
Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio. NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA's space technology roadmaps, which are expected to occur every 4 years.
Both the President's commission on how to implement the President's space exploration initiative and Congress asked the NRC undertake an assessment and review of the science proposed to be carried out under the initiative. An initial response to that request was the NRC February 2005 report, Science in NASA's Vision for Space Exploration. While that report's preparation, NASA created capabilities and strategy roadmapping efforts which became the object of the next phase of the NRC review. The new NASA administrator modified that NASA activity resulting in changes in the NRC review effort. This report provides a review of six science strategy roadmaps: robotic and human exploration of Mars; solar system exploration; universe exploration; search for earth-like planets; earth science and applications from space; and sun-earth system connection. In addition, an assessment of cross-cutting and integration issues is presented.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.