This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics,
This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.
This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics,
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.