Combinatorics deals with simple combinatorial problems, recurrence relations, and generating functions, particularly the binomial expansions. The book expounds on the general rules of combinatorics, the rule of sum, the rule of product, samples, permutations, combinations, and arrangements of subjects with various restrictions. The text also explains ordered or unordered partitions of numbers, geometric methods, random walk problems, and variants of the arithmetical triangle. One example of the use of combinatorics is the choice of the number 3 in the genetic code. Another example involves the choice of crew for a spaceship where it is necessary to consider the psychological conditions of the applicants for space travel. The text also investigates the sieve of Erastothenes whose problem concerns finding all the primes in the sequence of natural numbers from 1 to N. The book also tackles the application of power series to proof of identities, the binomial series expansion, decomposition into elementary fractions, and nonlinear recurrence relation. The book can be highly educational and interesting to students or academicians involved in mathematics, algebra, and statistics.
Stories About Sets discusses the cardinality of sets and mathematical concepts, such as function, curve, surface, dimensions, and the paradoxical properties of curves and surfaces. The book reviews sets, operations on sets, the empty set, subsets, the universal sets, intersection of sets, union of sets, partitioning of sets, and boolean algebras. The text also discusses the cardinality of sets, including equality between sets, countable sets, unequal sets, the uncountability of the continuum, the existence of transcendental numbers, and the enigmatic axiom. The book analyzes if a part can be equal to the whole (which turns out to be true if it is applied to infinite sets). The text also discusses the arithmetic of the infinite such as involving the multiplication of infinite cardinalities. The book explains some remarkable functions and curves, the Dirichlet's function, Cantor's set, points of fracture, and continuous functions whose graphs possess a tangent at no point. The text shows how to construct a closed curve of infinite length or a curve passing through all the points of a square. The book can prove interesting and highly educational for students with mathematic or algebra subjects, as well as for academicians involved in teaching statistics or mathematics.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Generalized Functions, Volume 4: Applications of Harmonic Analysis is devoted to two general topics—developments in the theory of linear topological spaces and construction of harmonic analysis in n-dimensional Euclidean and infinite-dimensional spaces. This volume specifically discusses the bilinear functionals on countably normed spaces, Hilbert-Schmidt operators, and spectral analysis of operators in rigged Hilbert spaces. The general form of positive generalized functions on the space S, continuous positive-definite functions, and conditionally positive generalized functions are also deliberated. This publication likewise considers the mean of a generalized random process, multidimensional generalized random fields, simplest properties of cylinder sets, and definition of Gaussian measures. This book is beneficial to students, specialists, and researchers aiming to acquire knowledge of functional analysis.
The concept of infinity is one of the most important, and at the same time, one of the most mysterious concepts of science. Already in antiquity many philosophers and mathematicians pondered over its contradictory nature. In mathematics, the contradictions connected with infinity intensified after the creation, at the end of the 19th century, of the theory of infinite sets and the subsequent discovery, soon after, of paradoxes in this theory. At the time, many scientists ignored the paradoxes and used set theory extensively in their work, while others subjected set-theoretic methods in mathematics to harsh criticism. The debate intensified when a group of French mathematicians, who wrote under the pseudonym of Nicolas Bourbaki, tried to erect the whole edifice of mathematics on the single notion of a set. Some mathematicians greeted this attempt enthusiastically while others regarded it as an unnecessary formalization, an attempt to tear mathematics away from life-giving practical applications that sustain it. These differences notwithstanding, Bourbaki has had a significant influence on the evolution of mathematics in the twentieth century. In this book we try to tell the reader how the idea of the infinite arose and developed in physics and in mathematics, how the theory of infinite sets was constructed, what paradoxes it has led to, what significant efforts have been made to eliminate the resulting contradictions, and what routes scientists are trying to find that would provide a way out of the many difficulties.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.