This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume.
About fifty years aga S. G. Mikhlin, in solving the regularization problem for two-dimensional singular integral operators [56], assigned to each such operator a func tion which he called a symbol, and showed that regularization is possible if the infimum of the modulus of the symbol is positive. Later, the notion of a symbol was extended to multidimensional singular integral operators (of arbitrary dimension) [57, 58, 21, 22]. Subsequently, the synthesis of singular integral, and differential operators [2, 8, 9]led to the theory of pseudodifferential operators [17, 35] (see also [35(1)-35(17)]*), which are naturally characterized by their symbols. An important role in the construction of symbols for many classes of operators was played by Gelfand's theory of maximal ideals of Banach algebras [201. Using this the ory, criteria were obtained for Fredholmness of one-dimensional singular integral operators with continuous coefficients [34 (42)], Wiener-Hopf operators [37], and multidimensional singular integral operators [38 (2)]. The investigation of systems of equations involving such operators has led to the notion of matrix symbol [59, 12 (14), 39, 41]. This notion plays an essential role not only for systems, but also for singular integral operators with piecewise-continuous (scalar) coefficients [44 (4)]. At the same time, attempts to introduce a (scalar or matrix) symbol for other algebras have failed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.