This volume contains selected papers of Dr Morikazu Toda. The papers are arranged in chronological order of publishing dates. Among Dr Toda's many contributions, his works on liquids and nonlinear lattice dynamics should be mentioned. The one-dimensional lattice where nearest neighboring particles interact through an exponential potential is called the Toda lattice which is a miracle and indeed a jewel in theoretical physics. The papers in this volume can be grouped into five subjects: statistical mechanics, theory of liquids and solutions, lattice dynamics, Toda lattice and soliton theory and its applications.
This volume contains selected papers of Dr Morikazu Toda. The papers are arranged in chronological order of publishing dates. Among Dr Toda's many contributions, his works on liquids and nonlinear lattice dynamics should be mentioned. The one-dimensional lattice where nearest neighboring particles interact through an exponential potential is called the Toda lattice which is a miracle and indeed a jewel in theoretical physics. The papers in this volume can be grouped into five subjects: statistical mechanics, theory of liquids and solutions, lattice dynamics, Toda lattice and soliton theory and its applications.
Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.
Statistical Physics II introduces nonequilibrium theories of statistical mechanics from the viewpoint of the fluctuation-disipation theorem. Emphasis is placed on the relaxation from nonequilibrium to equilibrium states, the response of a system to an external disturbance, and general problems involved in deriving a macroscopic physical process from more basic underlying processes. Fundamental concepts and methods are stressed, rather than the numerous individual applications.
Statistical Physics II introduces nonequilibrium theories of statistical mechanics from the viewpoint of the fluctuation-disipation theorem. Emphasis is placed on the relaxation from nonequilibrium to equilibrium states, the response of a system to an external disturbance, and general problems involved in deriving a macroscopic physical process from more basic underlying processes. Fundamental concepts and methods are stressed, rather than the numerous individual applications.
Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.
Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.
Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.
Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.
Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.
Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.