The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. - Provides theoretical and practical insight into power quality problems of electric machines and systems - 134 practical application (example) problems with solutions - 125 problems at the end of chapters dealing with practical applications - 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines
Power Quality in Power Systems, Electrical Machines, and Power-Electronic Drives uses current research and engineering practices, guidelines, standards, and regulations for engineering professionals and students interested in solving power quality problems in a cost effective, reliable, and safe manner within the context of renewable energy systems. The book contains chapters that address power quality across diverse facets of electric energy engineering, including AC and DC transmission and distribution lines; end-user applications such as electric machines, transformers, inductors, capacitors, wind power, and photovoltaic power plants; and variable-speed, variable-torque power-electronic drives. The book covers nonsinusoidal waveshapes, voltage disturbances, harmonic losses, aging and lifetime reductions, single-time events such as voltage dips, and the effects of variable-speed drives controlled by PWM converters. The book also reviews a corpus of techniques to mitigate power-quality problems, such as the optimal design of renewable energy storage devices (including lithium-ion batteries and fuel cells for automobiles serving as energy storage), and the optimal design of nonlinear loads for simultaneous efficiency and power quality. - Provides theoretical and practical insights into power-quality problems related to future, smart grid, renewable, hybrid electric power systems, electric machines, and variable-speed, variable-torque power-electronic drives - Contains a highly varied corpus of practical applications drawn from current international practice - Designed as a self-study tool with end-of-chapter problems and solutions designed to build understanding - Includes very highly referenced chapters that enable readers to save time and money in the research discovery process for critical research articles, regulatory standards, and guidelines
In today’s world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning. Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research; Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data; Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.