Brain Control of Wakefulness and Sleeping explores the history of efforts to understand the nature of waking and sleeping states from a biological point of view. This research represents the synthesis of the work of two individuals who have devoted their careers to investigating the mysterious states of the mind. This landmark book will interest the beginner scientist/researcher as well as the sleep clinician, with chapters on subjects including Neuronal Control of REM Sleep, Motor Systems and the Role of Active Forebrain, and Humoral Systems in Sleep Control. The authors explore the behavioral and physiological events of waking and sleep, analyzing the current realities and the future possibilities of unifying basic studies on anatomy and cellular psychology.
This book is part of an ongoing history of efforts to understand the nature of waking and sleeping states from a biological point of view. We believe the recent technological revolutions in anatomy and physiology make the present moment especially propitious for this effort. In planning this book we had the choices of producing an edited volume with invited chapter authors or of writing the book ourselves. Edited volumes offer the opportunity for expression of expertise in each chapter but, we felt, would not allow the development of our ideas on the potential and actual unity of the field and would not allow the expression of coherence that can be obtained only with one or two voices, but which may be quite difficult with a chorus assembled and performing together for the first time. (Unlike musical works, there is very little precedent for rehearsals and repeated performances for authors of edited volumes or even for the existence of conductors able to induce a single rhythm and vision of the composition. ) We thus decided on a monograph. The primary goal was to communicate the current realities and the future possibilities of unifying basic studies on anatomy and cellular physiology with investigations of the behavioral and physi ological events of waking and sleep. In keeping with this goal we cross-reference the basic cellular physiology in the latter chapters, and, in the last chapter, we take up possible links to relevant clinical phenomenology.
Conventional wisdom assumes that sleep is a resting state of the brain, with negligible activity of cortical neurons. Here, the author brings new evidence favoring the idea that during sleep, memory traces acquired while awake are consolidated. Mircea Steriade focuses on the coalescence of different sleep rhythms in interacting corticothalamic networks and on three types of paroxysmal disorders: spike-wave seizures as in absence epilepsy, Lennox-Gastaut seizures, and temporal-lobe epilepsy. Many physiological correlates of waking and sleep states as well as diverse types of epileptic seizures are also discussed.
The correct functioning of the mammalian brain depends on the integrated activity of myriad neuronal and non-neuronal cells. Discrete areas serve discrete functions, and dispersed or distributed communities of cells serve others. Throughout, these networks of activity are under the control of neuromodulatory systems. One goal of current neuroscientific research is to elucidate the precise methods by which these systems operate, especially during normal conscious behaviours and processes. Mircea Steriade and Denis Paré describe the neuronal properties and networks that exist within and between the cortex and two important sub-cortical structures: the thalamus and amygdala. The authors explore the changes in these properties, covering topics including morphology, electrophysiology, architecture and gating; and comparing regions and systems in both normal and diseased states. Aimed at graduates and postdoctoral researchers in neuroscience.
This monographic work authored by eminent neurophysiologists will be of major interest to researchers investigating the visual system or working in behavioral neuroscience and sleep research. The book deals with the neuronal circuits of the visual thalamocortical system, the brainstem and basal forebrain modulatory systems and their neurotransmitters acting upon these circuits, and the neuronal activities in the visual thalamocortical system as changed during shifts in behavioral states of vigilance from wake to sleep. Data discussed consist of recent studies on light and electron microscopy, extra- and intracellular recordings of thalamic and cortical neurons, neurotransmitter actions, and state-dependent cellular activities in the visual system.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.