This second edition reflects significant progress in tsunami research, monitoring and mitigation within the last decade. Primarily meant to summarize the state-of-the-art knowledge on physics of tsunamis, it describes up-to-date models of tsunamis generated by a submarine earthquake, landslide, volcanic eruption, meteorite impact, and moving atmospheric pressure inhomogeneities. Models of tsunami propagation and run-up are also discussed. The book investigates methods of tsunami monitoring including coastal mareographs, deep-water pressure gauges, GPS buoys, satellite altimetry, the study of ionospheric disturbances caused by tsunamis and the study of paleotsunamis. Non-linear phenomena in tsunami source and manifestations of water compressibility are discussed in the context of their contribution to the wave amplitude and energy. The practical method of calculating the initial elevation on a water surface at a seismotectonic tsunami source is expounded. Potential and eddy traces of a tsunamigenic earthquake in the ocean are examined in terms of their applicability to tsunami warning. The first edition of this book was published in 2009. Since then, a few catastrophic events occurred, including the 2011 Tohoku tsunami, which is well known all over the world. The book is intended for researchers, students and specialists in oceanography, geophysics, seismology, hydro-acoustics, geology, and geomorphology, including the engineering and insurance industries.
This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be used for studying the dynamics of aircraft in the atmosphere and spacecraft with stores of liquid fuel, which are rotating around some axis for stabilization. The results are also applicable in the development of fast revolving rotors, centrifuges and gyroscopes, which have cavities filled with liquid. This work will be of interest to researchers at universities and laboratories specializing in problems of control for hybrid systems, as well as to under-/postgraduates with this specialization. It will also benefit researchers and practitioners in aerospace and mechanical engineering.
This book addresses the relationship between the center and its provinces—an important issue in any society—using Russia as a case study. It analyses the historical stages of Russia's past, with special focus on the post-Communist era.
After many years of research and development, silicon carbide has emerged as one of the most important wide band gap semiconductors. The first commercial SiC devices OCo power switching Schottky diodes and high temperature MESFETs OCo are now on the market. This two-volume book gives a comprehensive, up-to-date review of silicon carbide materials properties and devices. With contributions by recognized leaders in SiC technology and materials and device research, SiC Materials and Devices is essential reading for technologists, scientists and engineers who are working on silicon carbide or other wide band gap materials and devices. The volumes can also be used as supplementary textbooks for graduate courses on silicon carbide and wide band gap semiconductor technology. Contents: SiC Material Properties (G Pensl et al.); SiC Homoepitaxy and Heteroepitaxy (A S Bakin); Ohmic Contacts to SiC (F Roccaforte et al.); Silicon Carbide Schottky Barrier Diode (J H Zhao et al.); High Power SiC PiN Rectifiers (R Singh); Silicon Carbide Diodes for Microwave Applications (K Vassilevski); SiC Thyristors (M E Levinshtein et al.); Silicon Carbide Static Induction Transistors (G C DeSalvo). Readership: Technologists, scientists, engineers and graduate students working on silicon carbide or other wide band gap materials and devices.
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.
The structure of sedimentary basins of the Russian Arctic Seas is studied and illustrated by a number of maps, cross-sections and geophysical models. The calculated density models of the Earth crust illustrate the deep structure of the main blocks of the crust. Five major gas-condensate and gas fields are discovered here: three (Shtokman, Ludlov, Ledovoe) in the Barents and two (Leningrad and Rusanov) in the Kara Sea.Geological and geophysical characteristics of the Russian Arctic Sea sedimentary basins allow an estimation of their hydrocarbon potential by comparison with the known world analogues.Total potential resources of giant deposits of hydrocarbons in Russian Arctic Seas are estimated at 470 billion barrels of oil equivalent. The richest resources are the Kara Sea and Laptev Sea. Less rich is Barents Sea. The relatively smaller contribution to the overall estimation of the resources makes the resources of East-Siberian Sea and Chukchi Sea.Development the energy capacity of the continental shelf of Russia can play a stabilizing role in the dynamics of oil and gas production in the period 2010-2020. A key role in developing the capacity of the Arctic shelf oil and gas play is the innovative technology in exploration, production and management of the relevant investment projects. World offshore experience indicates that the combination of these factors is achieved through the formation of international firms and organizations. - Comprehensively assesses the potential oil and gas resources in sedimentary basins within the Russian sector of the Arctic Ocean - Describes the economic and legal challenges to the development of offshore fields in Russia - Explores possible ways and timing to maKe these hydrocarbon resources available to the global market
This second edition reflects significant progress in tsunami research, monitoring and mitigation within the last decade. Primarily meant to summarize the state-of-the-art knowledge on physics of tsunamis, it describes up-to-date models of tsunamis generated by a submarine earthquake, landslide, volcanic eruption, meteorite impact, and moving atmospheric pressure inhomogeneities. Models of tsunami propagation and run-up are also discussed. The book investigates methods of tsunami monitoring including coastal mareographs, deep-water pressure gauges, GPS buoys, satellite altimetry, the study of ionospheric disturbances caused by tsunamis and the study of paleotsunamis. Non-linear phenomena in tsunami source and manifestations of water compressibility are discussed in the context of their contribution to the wave amplitude and energy. The practical method of calculating the initial elevation on a water surface at a seismotectonic tsunami source is expounded. Potential and eddy traces of a tsunamigenic earthquake in the ocean are examined in terms of their applicability to tsunami warning. The first edition of this book was published in 2009. Since then, a few catastrophic events occurred, including the 2011 Tohoku tsunami, which is well known all over the world. The book is intended for researchers, students and specialists in oceanography, geophysics, seismology, hydro-acoustics, geology, and geomorphology, including the engineering and insurance industries.
This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be used for studying the dynamics of aircraft in the atmosphere and spacecraft with stores of liquid fuel, which are rotating around some axis for stabilization. The results are also applicable in the development of fast revolving rotors, centrifuges and gyroscopes, which have cavities filled with liquid. This work will be of interest to researchers at universities and laboratories specializing in problems of control for hybrid systems, as well as to under-/postgraduates with this specialization. It will also benefit researchers and practitioners in aerospace and mechanical engineering.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.