Deep Learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks, and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background, by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects, and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed, and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems.
With the advent and increasing popularity of Computer Supported Collaborative Learning (CSCL) and e-learning technologies, the need of automatic assessment and of teacher/tutor support for the two tightly intertwined activities of comprehension of reading materials and of collaboration among peers has grown significantly. In this context, a polyphonic model of discourse derived from Bakhtin’s work as a paradigm is used for analyzing both general texts and CSCL conversations in a unique framework focused on different facets of textual cohesion. As specificity of our analysis, the individual learning perspective is focused on the identification of reading strategies and on providing a multi-dimensional textual complexity model, whereas the collaborative learning dimension is centered on the evaluation of participants’ involvement, as well as on collaboration assessment. Our approach based on advanced Natural Language Processing techniques provides a qualitative estimation of the learning process and enhances understanding as a “mediator of learning” by providing automated feedback to both learners and teachers or tutors. The main benefits are its flexibility, extensibility and nevertheless specificity for covering multiple stages, starting from reading classroom materials, to discussing on specific topics in a collaborative manner and finishing the feedback loop by verbalizing metacognitive thoughts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.