Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, various concepts from function theory and complex analytic geometry are drawn together to give a new approach to concrete spectral computations and give insights into new developments in the spectral theory of linear operators. Classical results from cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas that should stimulate further research among mathematicians.
The present lectures are based on a course deli vered by the authors at the Uni versi ty of Bucharest, in the winter semester 1985-1986. Without aiming at completeness, the topics selected cover all the major questions concerning hyponormal operators. Our main purpose is to provide the reader with a straightforward access to an active field of research which is strongly related to the spectral and perturbation theories of Hilbert space operators, singular integral equations and scattering theory. We have in view an audience composed especially of experts in operator theory or integral equations, mathematical physicists and graduate students. The book is intended as a reference for the basic results on hyponormal operators, but has the structure of a textbook. Parts of it can also be used as a second year graduate course. As prerequisites the reader is supposed to be acquainted with the basic principles of functional analysis and operator theory as covered for instance by Reed and Simon [1]. A t several stages of preparation of the manuscript we were pleased to benefit from proper comments made by our cOlleagues: Grigore Arsene, Tiberiu Constantinescu, Raul Curto, Jan Janas, Bebe Prunaru, Florin Radulescu, Khrysztof Rudol, Konrad Schmudgen, Florian-Horia Vasilescu. We warmly thank them all. We are indebted to Professor Israel Gohberg, the editor of this series, for his constant encouragement and his valuable mathematical advice. We wish to thank Mr. Benno Zimmermann, the Mathematics Editor at Birkhauser Verlag, for cooperation and assistance during the preparation of the manuscript.
This book exploits the classification of a class of linear bounded operators with rank-one self-commutators in terms of their spectral parameter, known as the principal function. The resulting dictionary between two dimensional planar shapes with a degree of shade and Hilbert space operators turns out to be illuminating and beneficial for both sides. An exponential transform, essentially a Riesz potential at critical exponent, is at the heart of this novel framework; its best rational approximants unveil a new class of complex orthogonal polynomials whose asymptotic distribution of zeros is thoroughly studied in the text. Connections with areas of potential theory, approximation theory in the complex domain and fluid mechanics are established. The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximation theory, mathematical physics.
The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially, his heritage.
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, various concepts from function theory and complex analytic geometry are drawn together to give a new approach to concrete spectral computations and give insights into new developments in the spectral theory of linear operators. Classical results from cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas that should stimulate further research among mathematicians.
This book exploits the classification of a class of linear bounded operators with rank-one self-commutators in terms of their spectral parameter, known as the principal function. The resulting dictionary between two dimensional planar shapes with a degree of shade and Hilbert space operators turns out to be illuminating and beneficial for both sides. An exponential transform, essentially a Riesz potential at critical exponent, is at the heart of this novel framework; its best rational approximants unveil a new class of complex orthogonal polynomials whose asymptotic distribution of zeros is thoroughly studied in the text. Connections with areas of potential theory, approximation theory in the complex domain and fluid mechanics are established. The text is addressed, with specific aims, at experts and beginners in a wide range of areas of current interest: potential theory, numerical linear algebra, operator theory, inverse problems, image and signal processing, approximation theory, mathematical physics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.