Fukushima Accident presents up-to-date information on radioactivity released to the atmosphere and the ocean after the accident on the Fukushima Dai-ichi nuclear power plant, on the distribution of radionuclides in the world atmosphere and oceans, and their impact on the total environment (man, fauna, and flora). The book will evaluate and discuss the post-Fukushima situation, emphasizing radionuclide impacts on the terrestrial and marine environments, and compare it with the pre-Fukushima sources of radionuclides in the environment. The authors' results, as well as knowledge gathered from the literature, will provide up-to-date information on the present status of the topics. Fukushima Accident is based on the environmental and nuclear research; however, the presentation will be suitable for university-level readers. - 2013 PROSE Award winner in Environmental Science from the Association of American Publishers - Covers atmospheric and marine radioactivity, providing information on the global atmospheric dispersion of radionuclides in the atmosphere and world oceans - Examines radiation doses to the public and biota to understand the health risks to the public and ecosystems - Provides information on monitoring radionuclides in the environment – information on sources of radionuclides, their temporal and spatial variations, and radionuclide levels - Covers transport of radionuclides from different sources (e.g. nuclear power plants) as well as atmospheric simulations and modeling approaches
Reissued in new covers, this is the run-away bestseller from one of the world's leading theoretical physicists. Are there other dimensions beyond our own? Is time travel possible? Michio Kaku takes us on a tour of the most exciting work in modern physics, including research into the 10th dimension, time warps, and multiple universes, to outline what may be the leading candidate for the Theory of Everything.
In recent years the Japanese have funded a comprehensive study of carbon materials which incorporate other elements including boron, nitrogen and fluorine, hence the title of the project "Carbon Alloys".Coined in 1992, the phrase "Carbon Alloys" can be applied to those materials mainly composed of carbon materials in multi-component systems. The carbon atoms of each component have a physical and/or chemical interactive relationship with other atoms or compounds. The carbon atoms of the components may have different hybrid bonding orbitals to create quite different carbon components.Eiichi Yasuda and his team consider the definition of Carbon Alloys, present the results of the Carbon Alloys projects, describe typical Carbon Alloys and their uses, discuss recent techniques for their characterization, and finally, illustrate potential applications and future developments for Carbon Alloy science. The book contains over thirty chapters on these studies from as many researchers.The most modern of techniques, particularly in the area of spectroscopy, were used as diagnostic tools, and many of these are applicable to pure carbons also. Porosity in carbons received considerable attention.
Carbon materials form pores ranging in size and morphology, from micropores of less than 1nm, to macropores of more than 50nm, and from channel-like spaces with homogenous diameters in carbon nanotubes, to round spaces in various fullerene cages, including irregularly-shaped pores in polycrystalline carbon materials. The large quantity and rapid rate of absorption of various molecules made possible by these attributes of carbon materials are now used in the storage of foreign atoms and ions for energy storage, conversion and adsorption, and for environmental remediation. Porous Carbons: Syntheses and Applications focuses on the fabrication and application of porous carbons. It considers fabrication at three scales: micropores, mesopores, and macropores. Carbon foams, sponges, and 3D-structured carbons are detailed. The title presents applications in four key areas: energy storage, energy conversion, energy adsorption, including batteries, supercapacitors, and fuel cells and environmental remediation, emphasizing the importance of pore structures at the three scales, and the diffusion and storage of various ions and molecules. The book presents a short history of each technique and material, and assesses advantages and disadvantages. This focused book provides researchers with a comprehensive understanding of both pioneering and current synthesis techniques for porous carbons, and their modern applications. - Presents modern porous carbon synthesis techniques and modern applications of porous carbons - Presents current research on porous carbons in energy storage, conversion and adsorption, and in environmental remediation - Provides a history and assessment of both pioneering and current cutting-edge synthesis techniques and materials - Covers a significant range of precursor materials, preparation techniques, and characteristics - Considers the future development of porous carbons and their various potential applications
Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite. - A progression from synthesis through modern carbonization techniques to applications gives you a thorough understanding of carbon materials - Covers a wide range of precursor materials, preparation techniques, and characteristics to inspire your own development of carbonization techniques, carbon materials and applications - Applications-oriented chapters include timely content on hot topics such as the engineering of carbon nanofibers and carbon materials for various energy-related applications
The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project "Method of Algebraic Analysis in Integrable Systems" in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years. Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics. Through these topics, the reader is exposed to the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.
This exciting book describes the latest technology in non-invasive thermometry that measures temperature distribution, with discussions focusing on image-based techniques. This is the first book devoted entirely to this topic. An international team of experts detail all important techniques for possible non-invasive thermometry. Descriptions of each technique explain in depth the principles of measurement, the measurement system, obtained temperature image, and the future prospects for the method.
Materials Science and Engineering of Carbon: Fundamentals provides a comprehensive introduction to carbon, the fourth most abundant element in the universe. The contents are organized into two main parts. Following a brief introduction on the history of carbon materials, Part 1 focuses on the fundamental science on the preparation and characterization of various carbon materials, and Part 2 concentrates on their engineering and applications, including hot areas like energy storage and environmental remediation. The book also includes up-to-date advanced information on such newer carbon-based materials as carbon nanotubes and nanofibers, fullerenes and graphenes. - Through review on fundamental science, engineering and applications of carbon materials - Overview on a wide variety of carbon materials (diamond, graphite, fullerene, carbon nanotubes, graphene, etc.) based on structure and nanotexture - Description on the preparation and applications of various carbon materials, in the relation to their basic structure and properties
We are all agreed that your theory is crazy. The question which divides us is whether it is crazy enough. Niels Bohr Superstring theory has emerged as the most promising candidate for a quan tum theory of all known interactions. Superstrings apparently solve a problem that has defied solution for the past 50 years, namely the unification of the two great fundamental physical theories of the century, quantum field theory and general relativity. Superstring theory introduces an entirely new physical picture into theoretical physics and a new mathematics that has startled even the mathematicians. Ironically, although superstring theory is supposed to provide a unified field theory of the universe, the theory itself often seems like a confused jumble offolklore, random rules of thumb, and intuition. This is because the develop ment of superstring theory has been unlike that of any other theory, such as general relativity, which began with a geometry and an action and later evolved into a quantum theory. Superstring theory, by contrast, has been evolving backward for the past 20 years. It has a bizarre history, beginning with the purely accidental discovery of the quantum theory in 1968 by G. Veneziano and M. Suzuki. Thumbing through old math books, they stumbled by chance on the Beta function, written down in the last century by mathematician Leonhard Euler.
Called by some "the theory of everything," superstrings may solve a problem which has eluded physicists for the past 50 years -- the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. This is a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentation, including: string field theory, multi loops, Teichmueller spaces, conformal field theory, and four-dimensional strings. The book begins with a simple discussion of point particle theory, and uses the Feynman path integral technique to unify the presentation of superstrings. Prerequisites are an aquaintance with quantum mechanics and relativity. This second edition has been revised and updated throughout.
DO THEY COME WHEN MISFORTUNE CALLS, OR DO THEY BRING MISFORTUNE WITH THEM?Seiji Tohno sometimes sees the people around him as monsters. It’s a curse that has driven him to a life of despair, living out of net cafés with nowhere to call home...but all that changes one twilit evening when he stumbles across a huge European mansion. There, Seiji meets a bewitchingly beautiful boy dressed in a white peony-print kimono who introduces himself as Shiroshi Saijou. This mysterious young man seems to know more about Seiji than he does himself, and before he knows it, Seiji has agreed to become Shiroshi’s part-time assistant. What he doesn’t know, however, is that Shiroshi’s “proxy service” is to consign yokai-possessed sinners to Hell, which will bring Seiji face-to-face with an unimaginable host of horrors!
Building on the foundations laid in his Introduction to Superstrings and M Theory, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, and the insights into 11-dimensional strings recently obtained from M-theory. New chapters discuss such topics as Seiberg-Witten theory, M theory and duality, and D-branes. Throughout, the author conveys the vitality of the current research and places readers at its forefront. Several chapters reviewing the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum.
How organisms come to possess adaptive traits is a fundamental question for evolutionary biology. Although it is almost impossible to demonstrate evolution in the laboratory, this issue can be approached by using an unusual organism, “Dark-fly”: Drosophila melanogaster kept in complete darkness for 57 years through 1,400 generations, which corresponds to 28,000 years in terms of human generations. Has Dark-fly adapted to an environment of total darkness? If so, what is the molecular nature of the adaptation? In Evolution in the Dark, the remarkable findings from the Dark-fly project performed at Kyoto University are presented. It was found that Dark-fly did not have poor eyesight, but rather exhibited higher phototaxis ability and displayed lengthened bristles on the head that function as tactile receptors. Circadian rhythms were weakened but still retained in Dark-fly. With recent progress in genome science enabling researchers to perform whole genome sequencing for Dark-fly, a large number of mutations were identified including genes encoding a light receptor, olfactory receptors, and enzymes involved in neural development. The Dark-fly project is a simple but very long-term experiment. Combined with advanced techniques in genetics and genomics, it is a valuable tool for understanding the molecular nature of adaptive evolution.
Graphene: Preparation, Properties, Applications and Prospects provides a comprehensive introduction on the science and engineering of graphene. The book is composed of 9 chapters, including a discussion on what graphene is, detailed descriptions of preparation procedures, applications based on respective properties, including electrical, chemical, mechanical, thermal and biomedical, and reviews on materials derived from graphene (graphene derivatives) and other layered materials. - Provides differentiation on two kinds of graphene, graphene with highly-crystalline layers and reduced graphene oxide with highly-defective layers - Thorough reviews a wide variety of preparation procedures of two kinds of graphene, including the formation of graphene foams, films and horns, and the doping of foreign atoms - Contains a comprehensive review of electrical, chemical, mechanical, thermal and biomedical properties and applications based on these properties
Takeyama's writings educate readers about how the war affected ordinary Japanese and convey his thoughts about Japan's ally Germany, the Tokyo War Crimes Trial, and the immediate postwar years."--BOOK JACKET.
Turbulence in Open Channel and River Flows covers turbulence and related fluid mechanics in open-channel flows, addressing both basic mechanisms and their applications. It helps readers understand the organized motion involved in turbulent flow and apply this understanding to the practice of hydraulic engineering, including mass and sediment transport. Chapters cover mathematical expansion procedures and basic fluid mechanics to help readers understand essentially physical phenomena, and present special techniques for measurement and accurate direct observation of open-channel turbulence in laboratory flumes or natural rivers. Topics related to environmental management and turbulence-related disasters are addressed. Includes detailed mathematical expansions and supporting supplements in an appendix Presents the mathematics and fluid mechanics needed to understand turbulence in open channels Includes experimental topics from the author’s research, encouraging readers to measure and accurately observe turbulence in laboratories and rivers The book is ideal for graduate students, researchers and engineers in hydraulics and hydromechanics.
What is superstring theory and why is it important? Can superstrings offer the fulfilment of Einstein's lifelong dream of a Theory of Everything? Co-authored by one of the leading pioneers in superstrings, this book approaches these scientific questions, looking at the scientific research.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1997.
Following on the foundations laid in his earlier book "Introduction to Superstrings", Professor Kaku discusses such topics as the classification of conformal string theories, the non-polynomial closed string field theory, matrix models, and topological field theory. The presentation of the material is self-contained, and several chapters review material expounded in the earlier book. This book provides students with an understanding of the main areas of current progress in string theory, placing the reader at the forefront of current research.
The national bestselling author of The God Equation and renowned theoretical physicist examines the scientific revolutions that have reshaped the twentieth century—the quantum mechanics, biogenetics, and artificial intelligence—and shows how they will change and alter science and the way we live. "An erudite, compelling insider's look into the most mind-bending potential of science research." —Chicago Tribune The next century will witness more far-reaching scientific revolutions, as we make the transition from unraveling the secrets of nature to becoming masters of nature. We will no longer be passive bystanders to the dance of the universe, but will become creative choreographers of matter, life, and intelligence. The first section of Visions presents a shocking look at a cyber-world infiltrated by millions of tiny intelligence systems. Part two illustrates how the decoding of DNA's genetic structure will allow humans the "godlike ability to manipulate life almost at will." Finally, Visions focuses on the future of quantum physics, in which physicists will perfect new ways to manipulate matter and harness the cosmic energy of the universe. What makes Michio Kaku's vision of the science of the future so compelling--and so different from the mere forecasts of most thinkers--is that it is based on the groundbreaking research taking place in labs today, as well as the consensus of over 150 of Kaku's scientific colleagues. Science, for all its breathtaking change, evolves slowly; we can accurately predict, asserts Kaku, what the direction of science will be, based on the paths that are being forged today. A thrilling, unique narrative that brings together the thinking of many of the world's most accomplished scientists to explore the world of the future, Visions is science writing at its best.
This volume will be the first reference book devoted specially to the Yang-Baxter equation. The subject relates to broad areas including solvable models in statistical mechanics, factorized S matrices, quantum inverse scattering method, quantum groups, knot theory and conformal field theory. The articles assembled here cover major works from the pioneering papers to classical Yang-Baxter equation, its quantization, variety of solutions, constructions and recent generalizations to higher genus solutions./a
Integrable models in statistical mechanics and quantum field theory constitute a rich research field at the crossroads of modern mathematics and theoretical physics. An important issue to understand is the space of local operators in the system and, ultimately, their correlation functions and form factors. This book is the first published monograph on this subject. It treats integrable lattice models, notably the six-vertex model and the XXZ Heisenberg spin chain. A pair of fermions is introduced and used to create a basis of the space of local operators, leading to the result that all correlation functions at finite distances are expressible in terms of two transcendental functions with rational coefficients. Step-by-step explanations are given for all materials necessary for this construction, ranging from algebraic Bethe ansatz, representations of quantum groups, and the Bazhanov-Lukyanov-Zamolodchikov construction in conformal field theory to Riemann surfaces and their Jacobians. Several examples and applications are given along with numerical results. Going through the book, readers will find themselves at the forefront of this rapidly developing research field.
Knowledge-Driven Work is a pioneering study of the cross-cultural iffusion of ideas about the organization of work. These ideas, linked with the knowledge of the workforce, are rapidly becoming the primary source of competitive advantage in the world economy. The book provides an in-depth look at eight Japanese-affiliated manufacturing facilities operating in the United States, combined with examinations of their sister facilities in Japan. The authors offer their insights into the complex process by which elements of work systems in one country interact with those in another. They trace the flow of ideas from Japan to the US and other nations, and the beginnings of a reverse diffusion of innovation back to Japan. The authors organize their findings into six categories: the cross-cultural diffusion of work practices, team-based work systems, kaizen and employee involvement, employment security, human resource management, and labor-management relations. Their study of team-based work systems yields a taxonomy of teams and reveals some conflicts between the desire for self-management and the existence of interdependencies. Investigations into kaizen (ongoing incremental improvement) indicate that its emphasis on employee-driven, systematic problem solving makes it a strong counterpoint to the idea of top-down "re-engineering." Looking at employment security, the authors note that while most US managers believe that it restrains managerial flexibility, managers at the firms they observed see it as essential to the flexibility associated with teamwork and kaizen. The study of human resource management practices suggests competitive advantages in diverse, older, unionized, and urban work forces, and emphasizes the importance of wide-ranging training programs in a work system premised on a long-term perspective. The "wildcard" in the work places observed is labor-management relations, the area in which Japanese managers have been least likely to import their ideas. The authors report on several situations in which existing labor-management structures remained untouched, with mixed results: greater labor-management consultation, for example, but also increased ambiguity of roles. The thread running through all of these areas of work is "virtual knowledge," an ephemeral form of knowledge derived from a particular combination of people focused on a given issue. The authors point out that this powerful form of knowledge is only effectively harnessed in environments that are free of fear, that have established procedures for collective problem-solving, and that have some stability in group composition. They claim that too often companies allow virtual knowledge to dissipate, squandering opportunities to create more competitive workplaces. For those organizations that have succeeded in anticipating and channeling it, however, virtual knowledge leads to a knowledge-driven workplace and continuous improvement.
The important data of economics are in the form of time series; therefore, the statistical methods used will have to be those designed for time series data. New methods for analyzing series containing no trends have been developed by communication engineering, and much recent research has been devoted to adapting and extending these methods so that they will be suitable for use with economic series. This book presents the important results of this research and further advances the application of the recently developed Theory of Spectra to economics. In particular, Professor Hatanaka demonstrates the new technique in treating two problems-business cycle indicators, and the acceleration principle existing in department store data. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1985.
The notion of solitons arose with the study of partial differential equations at the end of the 19th century. In more recent times their study has involved ideas from other areas of mathematics such as algebraic gometry, topology, and in particular infinite dimensional Lie algebras, and it this approach that is the main theme of this book.This book will be of great interest to all whose research interests involves the mathematics of solitons.
Offers new ways of understanding the economic problems of industrialized countries, providing an effective critique of current economic theories and developing an original model of the economics (neoclassical, Marxist, Keynesian) of modern industrial society.
#1 NEW YORK TIMES BESTSELLER • The epic story of the greatest quest in all of science—the holy grail of physics that would explain the creation of the universe—from renowned theoretical physicist and author of The Future of the Mind and The Future of Humanity When Newton discovered the law of gravity, he unified the rules governing the heavens and the Earth. Since then, physicists have been placing new forces into ever-grander theories. But perhaps the ultimate challenge is achieving a monumental synthesis of the two remaining theories—relativity and the quantum theory. This would be the crowning achievement of science, a profound merging of all the forces of nature into one beautiful, magnificent equation to unlock the deepest mysteries in science: What happened before the Big Bang? What lies on the other side of a black hole? Are there other universes and dimensions? Is time travel possible? Why are we here? Kaku also explains the intense controversy swirling around this theory, with Nobel laureates taking opposite sides on this vital question. It is a captivating, gripping story; what’s at stake is nothing less than our conception of the universe. Written with Kaku’s trademark enthusiasm and clarity, this epic and engaging journey is the story of The God Equation.
The national bestselling author of The God Equation takes us on a thrilling journey to explore black holes and time machines, multidimensional space and the possibility that parallel universes may lay alongside our own. “A wonderful tour, with an expert guide.” —Brian Greene, New York Times bestselling author of The Elegant Universe Kaku skillfully guides us through the latest innovations in string theory and its latest iteration, M-theory, which posits that our universe may be just one in an endless multiverse, a singular bubble floating in a sea of infinite bubble universes. If M-theory is proven correct, we may perhaps finally find answer to the question, “What happened before the big bang?” This is an exciting and unforgettable introduction into the new cutting-edge theories of physics and cosmology from one of the pre-eminent voices in the field.
The 1980s saw a whole wave of practical applications of fuzzy theory, mainly in the field of process control, with Japan as pioneer. In the '90s there has been a flood of applications to household electrical appliances, and?fuzzy? has become a high-tech buzz-word in Japan. Since then many countries have followed suit and developed their own fuzzy applications.This book reviews the burgeoning industrial applications of fuzzy theory. The contributors are mostly industrial engineers or research experts in the field. The areas covered include automobiles, home appliances, voice recognition, medical techniques, fuzzy design, process control, space operations and mobile autonomous robots.Very recently the development of fuzzy theory has become intertwined with fields such as neural networks and chaos. This volume also summarizes such trends in an industrial context.The book will be of use to senior undergraduates or graduate students, industrial research scientists, and anyone interested in the wide-ranging applicational aspects of fuzzy theory today.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.