DNA Methylation and Complex Human Disease reviews the possibilities of methyl-group-based epigenetic biomarkers of major diseases, tailored epigenetic therapies, and the future uses of high-throughput methylome technologies. This volume includes many pertinent advances in disease-bearing research, including obesity, type II diabetes, schizophrenia, and autoimmunity. DNA methylation is also discussed as a plasma and serum test for non-invasive screening, diagnostic and prognostic tests, as compared to biopsy-driven gene expression analysis, factors which have led to the use of DNA methylation as a potential tool for determining cancer risk, and diagnosis between benign and malignant disease. Therapies are at the heart of this volume and the possibilities of DNA demethylation. In cancer, unlike genetic mutations, DNA methylation and histone modifications are reversible and thus have shown great potential in the race for effective treatments. In addition, the authors present the importance of high-throughput methylome analysis, not only in cancer, but also in non-neoplastic diseases such as rheumatoid arthritis. - Discusses breaking biomarker research in major disease families of current health concern and research interest, including obesity, type II diabetes, schizophrenia, and autoimmunity - Summarizes advances not only relevant to cancer, but also in non-neoplastic disease, currently an emerging field - Describes wholly new concepts, including the linking of metabolic pathways with epigenetics - Provides translational researchers with the knowledge of both basic research and clinic applications of DNA methylation in human diseases
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
This book provides the most comprehensive mathematical treatment to date of the Feynman path integral and Feynman's operational calculus. It is accessible to mathematicians, mathematical physicists and theoretical physicists. Including new results and much material previously only available in the research literature, this book discusses both the mathematics and physics background that motivate the study of the Feynman path integral and Feynman's operational calculus, and also provides more detailed proofs of the central results.
The endothelium controls vascular tone by releasing various vasoactive substances. Additionally, another pathway associated with the hyperpolarization of both endothelial and vascular smooth muscle cells contributes also to endothelium-dependent relaxations (EDHF-mediated responses). These responses involve an increase in the intracellular Ca concentration of the endothelial cells followed by the opening of Ca-activated K channels of small and intermediate conductances (SKCa and IKCa). These channels show a distinct subcellular distribution, suggesting that their activation could be elicited by distinct stimuli. Following KCa activation, the endothelial hyperpolarization can be conducted to the underlying smooth muscle cells by electrical coupling through myo-endothelial gap junctions. In addition, the potassium efflux can lead to the accumulation of potassium ions in the intercellular space and the subsequent activation of smooth muscle Kir2.1 and/or Na/K-ATPase. The hyperpolarization of the smooth muscle cells produces vascular relaxation, predominantly by closing voltage-gated calcium channels, and vasodilatation. EDHFmediated responses are altered in various pathologies or, conversely, act as a compensating mechanism when other endothelial pathways are impaired. A better characterization of EDHF-mediated responses should allow determining whether or not new drugable targets can be identified within this endothelial pathway for the treatment of cardiovascular diseases. Table of Contents: Endothelium-Dependent Hyperpolarizations: The Classical "EDHF" Pathway / Conclusion / References
The endothelium controls vascular tone by releasing various vasoactive substances. Additionally, another pathway associated with the hyperpolarization of both endothelial and vascular smooth muscle cells contributes also to endothelium-dependent relaxations (EDHF-mediated responses). These responses involve an increase in the intracellular Ca concentration of the endothelial cells followed by the opening of Ca-activated K channels of small and intermediate conductances (SKCa and IKCa). These channels show a distinct subcellular distribution, suggesting that their activation could be elicited by distinct stimuli. Following KCa activation, the endothelial hyperpolarization can be conducted to the underlying smooth muscle cells by electrical coupling through myo-endothelial gap junctions. In addition, the potassium efflux can lead to the accumulation of potassium ions in the intercellular space and the subsequent activation of smooth muscle Kir2.1 and/or Na/K-ATPase. The hyperpolarization of the smooth muscle cells produces vascular relaxation, predominantly by closing voltage-gated calcium channels, and vasodilatation. EDHFmediated responses are altered in various pathologies or, conversely, act as a compensating mechanism when other endothelial pathways are impaired. A better characterization of EDHF-mediated responses should allow determining whether or not new drugable targets can be identified within this endothelial pathway for the treatment of cardiovascular diseases. Table of Contents: Endothelium-Dependent Hyperpolarizations: The Classical "EDHF" Pathway / Conclusion / References
DNA Methylation and Complex Human Disease reviews the possibilities of methyl-group-based epigenetic biomarkers of major diseases, tailored epigenetic therapies, and the future uses of high-throughput methylome technologies. This volume includes many pertinent advances in disease-bearing research, including obesity, type II diabetes, schizophrenia, and autoimmunity. DNA methylation is also discussed as a plasma and serum test for non-invasive screening, diagnostic and prognostic tests, as compared to biopsy-driven gene expression analysis, factors which have led to the use of DNA methylation as a potential tool for determining cancer risk, and diagnosis between benign and malignant disease. Therapies are at the heart of this volume and the possibilities of DNA demethylation. In cancer, unlike genetic mutations, DNA methylation and histone modifications are reversible and thus have shown great potential in the race for effective treatments. In addition, the authors present the importance of high-throughput methylome analysis, not only in cancer, but also in non-neoplastic diseases such as rheumatoid arthritis. - Discusses breaking biomarker research in major disease families of current health concern and research interest, including obesity, type II diabetes, schizophrenia, and autoimmunity - Summarizes advances not only relevant to cancer, but also in non-neoplastic disease, currently an emerging field - Describes wholly new concepts, including the linking of metabolic pathways with epigenetics - Provides translational researchers with the knowledge of both basic research and clinic applications of DNA methylation in human diseases
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.