The book provides a thorough treatment of set functions, games and capacities as well as integrals with respect to capacities and games, in a mathematical rigorous presentation and in view of application to decision making. After a short chapter introducing some required basic knowledge (linear programming, polyhedra, ordered sets) and notation, the first part of the book consists of three long chapters developing the mathematical aspects. This part is not related to a particular application field and, by its neutral mathematical style, is useful to the widest audience. It gathers many results and notions which are scattered in the literature of various domains (game theory, decision, combinatorial optimization and operations research). The second part consists of three chapters, applying the previous notions in decision making and modelling: decision under uncertainty, decision with multiple criteria, possibility theory and Dempster-Shafer theory.
With the vision that machines can be rendered smarter, we have witnessed for more than a decade tremendous engineering efforts to implement intelligent sys tems. These attempts involve emulating human reasoning, and researchers have tried to model such reasoning from various points of view. But we know precious little about human reasoning processes, learning mechanisms and the like, and in particular about reasoning with limited, imprecise knowledge. In a sense, intelligent systems are machines which use the most general form of human knowledge together with human reasoning capability to reach decisions. Thus the general problem of reasoning with knowledge is the core of design methodology. The attempt to use human knowledge in its most natural sense, that is, through linguistic descriptions, is novel and controversial. The novelty lies in the recognition of a new type of un certainty, namely fuzziness in natural language, and the controversality lies in the mathematical modeling process. As R. Bellman [7] once said, decision making under uncertainty is one of the attributes of human intelligence. When uncertainty is understood as the impossi bility to predict occurrences of events, the context is familiar to statisticians. As such, efforts to use probability theory as an essential tool for building intelligent systems have been pursued (Pearl [203], Neapolitan [182)). The methodology seems alright if the uncertain knowledge in a given problem can be modeled as probability measures.
The book provides a thorough treatment of set functions, games and capacities as well as integrals with respect to capacities and games, in a mathematical rigorous presentation and in view of application to decision making. After a short chapter introducing some required basic knowledge (linear programming, polyhedra, ordered sets) and notation, the first part of the book consists of three long chapters developing the mathematical aspects. This part is not related to a particular application field and, by its neutral mathematical style, is useful to the widest audience. It gathers many results and notions which are scattered in the literature of various domains (game theory, decision, combinatorial optimization and operations research). The second part consists of three chapters, applying the previous notions in decision making and modelling: decision under uncertainty, decision with multiple criteria, possibility theory and Dempster-Shafer theory.
This book focuses on one of the major challenges of the newly created scientific domain known as data science: turning data into actionable knowledge in order to exploit increasing data volumes and deal with their inherent complexity. Actionable knowledge has been qualitatively and intensively studied in management, business, and the social sciences but in computer science and engineering, its connection has only recently been established to data mining and its evolution, ‘Knowledge Discovery and Data Mining’ (KDD). Data mining seeks to extract interesting patterns from data, but, until now, the patterns discovered from data have not always been ‘actionable’ for decision-makers in Socio-Technical Organizations (STO). With the evolution of the Internet and connectivity, STOs have evolved into Cyber-Physical and Social Systems (CPSS) that are known to describe our world today. In such complex and dynamic environments, the conventional KDD process is insufficient, and additional processes are required to transform complex data into actionable knowledge. Readers are presented with advanced knowledge concepts and the analytics and information fusion (AIF) processes aimed at delivering actionable knowledge. The authors provide an understanding of the concept of ‘relation’ and its exploitation, relational calculus, as well as the formalization of specific dimensions of knowledge that achieve a semantic growth along the AIF processes. This book serves as an important technical presentation of relational calculus and its application to processing chains in order to generate actionable knowledge. It is ideal for graduate students, researchers, or industry professionals interested in decision science and knowledge engineering.
The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.
With the vision that machines can be rendered smarter, we have witnessed for more than a decade tremendous engineering efforts to implement intelligent sys tems. These attempts involve emulating human reasoning, and researchers have tried to model such reasoning from various points of view. But we know precious little about human reasoning processes, learning mechanisms and the like, and in particular about reasoning with limited, imprecise knowledge. In a sense, intelligent systems are machines which use the most general form of human knowledge together with human reasoning capability to reach decisions. Thus the general problem of reasoning with knowledge is the core of design methodology. The attempt to use human knowledge in its most natural sense, that is, through linguistic descriptions, is novel and controversial. The novelty lies in the recognition of a new type of un certainty, namely fuzziness in natural language, and the controversality lies in the mathematical modeling process. As R. Bellman [7] once said, decision making under uncertainty is one of the attributes of human intelligence. When uncertainty is understood as the impossi bility to predict occurrences of events, the context is familiar to statisticians. As such, efforts to use probability theory as an essential tool for building intelligent systems have been pursued (Pearl [203], Neapolitan [182)). The methodology seems alright if the uncertain knowledge in a given problem can be modeled as probability measures.
With the vision that machines can be rendered smarter, we have witnessed for more than a decade tremendous engineering efforts to implement intelligent sys tems. These attempts involve emulating human reasoning, and researchers have tried to model such reasoning from various points of view. But we know precious little about human reasoning processes, learning mechanisms and the like, and in particular about reasoning with limited, imprecise knowledge. In a sense, intelligent systems are machines which use the most general form of human knowledge together with human reasoning capability to reach decisions. Thus the general problem of reasoning with knowledge is the core of design methodology. The attempt to use human knowledge in its most natural sense, that is, through linguistic descriptions, is novel and controversial. The novelty lies in the recognition of a new type of un certainty, namely fuzziness in natural language, and the controversality lies in the mathematical modeling process. As R. Bellman [7] once said, decision making under uncertainty is one of the attributes of human intelligence. When uncertainty is understood as the impossi bility to predict occurrences of events, the context is familiar to statisticians. As such, efforts to use probability theory as an essential tool for building intelligent systems have been pursued (Pearl [203], Neapolitan [182)). The methodology seems alright if the uncertain knowledge in a given problem can be modeled as probability measures.
The first translation of the volumes in Michel Serres' classic 'Humanism' tetralogy, this ambitious philosophical narrative explores what it means to be human. With his characteristic breadth of references including art, poetry, science, philosophy and literature, Serres paints a new picture of what it might mean to live meaningfully in contemporary society. He tells the story of humankind (from the beginning of time to the present moment) in an attempt to affirm his overriding thesis that humans and nature have always been part of the same ongoing and unfolding history. This crucial piece of posthumanist philosophical writing has never before been released in English. A masterful translation by Randolph Burks ensures the poetry and wisdom of Serres writing is preserved and his notion of what humanity is and might be is opened up to new audiences.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.