1 The Investigation of Hole States in Nuclei by Means of Knockout and Other Reactions.- 1. Introduction.- 2. Formalism for Knockout and Pickup Reactions.- 2.1. The Matrix Element and Overlap Integral.- 2.2 The Single-Nucleon Case.- 2.3. The Two-Nucleon Case.- 2.4. The Multi-Nucleon Case.- 2.5. Distortion and Finite-Range Effects.- 3. Single-Nucleon Knockout and Related Reactions.- 3.1. Comparison of Knockout and Pickup Reactions.- 3.2. Special Features of Knockout Reactions.- 3.3. Spectroscopic Studies.- 3.4. Proton States.- 3.5. Neutron States.- 4. Cluster Knockout and Related Reactions.- 4.1.
Melanie Klein and Marcelle Spira: Their Correspondence and Context includes 45 letters Melanie Klein wrote to the Swiss psychoanalyst Marcelle Spira between 1955 and 1960, as well as six rough drafts from Spira. They were discovered in Spira’s library after her death in 2006. As only a few of the letters that Klein wrote to her colleagues have been preserved, this moving, historically important correspondence sheds new light upon the last five years of Klein’s creative life. The common theme of the letters is their discussion of the French translation of The Psycho-Analysis of Children by Boulanger in collaboration with Spira. The translation, first undertaken by Lacan, went through many ups and downs until it was published in 1959 by the Presses Universitaires de France. Klein also discusses her current work, in particular Envy and Gratitude (1957). She encourages her pioneering Swiss colleague Spira to be patient in the face of the resistance shown towards Kleinian thinking. Identifying herself to some extent with her younger follower, Klein reveals a very touching autobiographical account of the difficulties that she herself had encountered in her work and how she overcame them. In Melanie Klein and Marcelle Spira: Their Correspondence and Context, Jean-Michel Quinodoz brings together these important letters. This rare collection of their correspondence is a valuable contribution to the history of psychoanalysis and will be essential reading for psychoanalysts, trainee psychoanalysts and lay readers with an interest in the work of Klein and Spira.
Winner of the 2010 Sigourney Award! Quinodoz brings together views of eminent analysts to present a comprehensive approach to the experience of loneliness, anxiety about which commonly leads people to analysis and which stems from unresolved anxiety about separation.
Gas phase molecular spectroscopy is a powerful tool for obtaining information on the geometry and internal structure of isolated molecules as well as on the interactions that they undergo. It enables the study of fundamental parameters and processes and is also used for the sounding of gas media through optical techniques. It has been facing always renewed challenges, due to the considerable improvement of experimental techniques and the increasing demand for accuracy and scope of remote sensing applications. In practice, the radiating molecule is usually not isolated but diluted in a mixture at significant total pressure. The collisions among the molecules composing the gas can have a large influence on the spectral shape, affecting all wavelength regions through various mechanisms. These must be taken into account for the correct analysis and prediction of the resulting spectra. This book reviews our current experimental and theoretical knowledge and the practical consequences of collisional effects on molecular spectral shapes in neutral gases. General expressions are first given. They are formal of difficult use for practical calculations often but enable discussion of the approximations leading to simplified situations. The first case examined is that of isolated transitions, with the usual pressure broadening and shifting but also refined effects due to speed dependence and collision-induced velocity changes. Collisional line-mixing, which invalidates the notion of isolated transitions and has spectral consequences when lines are closely spaced, is then discussed within the impact approximation. Regions where the contributions of many distant lines overlap, such as troughs between transitions and band wings, are considered next. For a description of these far wings the finite duration of collisions and concomitant breakdown of the impact approximation must be taken into account. Finally, for long paths or elevated pressures, the dipole or polarizability induced by intermolecular interactions can make significant contributions. Specific models for the description of these collision induced absorption and light scattering processes are presented. The above mentioned topics are reviewed and discussed from a threefold point of view: the various models, the available data, and the consequences for applications including heat transfer, remote sensing and optical sounding. The extensive bibliography and discussion of some remaining problems complete the text. - State-of-the-art on the subject - A bibliography of nearly 1,000 references - Tools for practical calculations - Consequences for other scientific fields - Numerous illustrative examples - Fulfilling a need since there is no equivalent monograph on the subject
Immerse yourself in the fascinating world of the Egyptian pyramids and discover the secrets of their impressive construction. In this groundbreaking reference book, written by an experienced Egyptologist and a French logistician, the invention and construction of the pyramids is illuminated with a detailed study. From the archaeological documentation of the building evidence to the development of an innovative theory that explains the construction of the pyramids without contradiction, this book offers a comprehensive analysis for experts and interested laymen alike. Learn more about the building techniques of the Old Kingdom, the use of tangential ramps in pyramid construction and the exciting history behind the famous monuments. Immerse yourself in the world of Egyptological reconstruction and solve the mystery of the pyramids.
Photogrammetry is the use of photography for surveying primarily and is used for the production of maps from aerial photographs. Along with remote sensing, it represents the primary means of generating data for Geographic Information Systems (GIS). Digital Photogrammetry is a unique book in that it examines the digital aspect of photogrammetry and delves into topics like acquisition of data, workstations, digital tools, Orthophotography, and more. This book is particularly useful as a text for graduate students in geomantics, but is also suitable for people with a good basic scientific knowledge who need to understand photogrammetry, and who wish to use the book as a reference.
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.
The present volume is dedicated to celebrate the work of the renowned mathematician Herbert Amann, who had a significant and decisive influence in shaping Nonlinear Analysis. Most articles published in this book, which consists of 32 articles in total, written by highly distinguished researchers, are in one way or another related to the scientific works of Herbert Amann. The contributions cover a wide range of nonlinear elliptic and parabolic equations with applications to natural sciences and engineering. Special topics are fluid dynamics, reaction-diffusion systems, bifurcation theory, maximal regularity, evolution equations, and the theory of function spaces.
This book focuses on iterative solvers and preconditioners for mixed finite element methods. It provides an overview of some of the state-of-the-art solvers for discrete systems with constraints such as those which arise from mixed formulations. Starting by recalling the basic theory of mixed finite element methods, the book goes on to discuss the augmented Lagrangian method and gives a summary of the standard iterative methods, describing their usage for mixed methods. Here, preconditioners are built from an approximate factorisation of the mixed system. A first set of applications is considered for incompressible elasticity problems and flow problems, including non-linear models. An account of the mixed formulation for Dirichlet’s boundary conditions is then given before turning to contact problems, where contact between incompressible bodies leads to problems with two constraints. This book is aimed at graduate students and researchers in the field of numerical methods and scientific computing.
Michel de M'Uzan has derived several innovative notions from his clinical experience that are relevant not only for the psychoanalyst's status of identity, which is sometimes dramatically shaken by his or her patient's unconscious, but also for the artist who is deeply destabilized by his act of creation, as well as for the caring person who lets him/herself be caught in the nets, as it were, of someone who is dying. Such are the extreme examples of the precarious nature of the boundaries of being in which the author discerns, not necessarily a pathological disposition, but rather an opportunity for the mind to construct itself and achieve authenticity. Through this invigorating recognition of the unconscious with the emergence, at the heart of analysis, of 'paradoxical thoughts', the experience of 'blurred frontiers' characteristic of a vacillating sense of identity, the perception of an 'every man's land' in which the analytic treatment unfolds, and the elaboration of an 'original grammar' specific to the formulation of the intervention/interpretation of the analyst during the session.
This book skillfully combines autobiographical stories with clear psychoanalytical theories. During her childhood, the author experienced the Holocaust and was left understandly traumatised by it. It was her desire to confront this trauma that led her to psychoanalysis. For decades, the coherence of psychoanalysis seemed to be threatened by the conflicting thinking of many psychoanalytical colleagues about trauma and trauma affect, and also about the influence of external reality on the psychic reality discovered by Freud. However, the author counters this potential conflict with her innovative theoretical integration, combined with remarkable conceptual outcomes and treatment techniques. This book spans the author's work over the last fifteen years on the impact of external reality on psychic reality. During this period many analysts, especially in the English-speaking countries and Germany, where historic events loomed large in the lives of their patients, have turned from the exclusive emphasis on psychic reality to greater attention to the traumatic impact of external reality.
The present volume reaffirms nuclear physics as an experimental science since the authors are primarily experimentalists and since the treatment of the topics might be said to be "experimental." (This is no reflection on the theoretical competence of any of the authors.) The subject of high-spin phenomena in heavy nuclei has grown much beyond the idea of "backbending" which gave such an impetus to its study five years ago. It is a rich, new field to which Lieder and Ryde have contributed greatly. The article "Valence and Doorway Mechanisms in Resonance Neutron Capture" is, in contradistinction, an article pertaining to one of the oldest branches of nuclear physics-and it brings back one of our previous authors. The Doppler-shift method, reviewed by Alexander and Forster, is one of the important new experimental techniques that emerged in the previous decade. This review is intended, deliberately, to describe thoroughly a classic technique whose elegance epitomizes much of the fascination which nuclear physics techniques have held for a generation of scientists. This volume concludes the work on the Advances in Nuclear Physics series of one of the editors (M. Baranger), whose judgment and style characterize that which is best in the first ten volumes. Many of our readers and most of our authors will be grateful for the high standards which marked his contributions and which often elicited extra labor from the many authors of the series.
In both the present volume of Advances in Nuclear Physics and in the next volume, which will follow in a few months' time, we have stretched our normal pattern of reviews by including articles of more major proportions than any we have published before. As a result we have only three review articles in Volume 5. From the beginning of this series it has been our aim, as editors, to achieve variation in the scope, style, and length of individual articles sufficient to match the needs of the individual topic, rather than to restrain authors within rigid limits. It has not been our experience that this flexibility has led to unnecessary exuberance on the part of the authors. We feel that the major articles now entering the series are entirely justified. The article by Professor Delves on "Variational Techniques in the Nuclear Three-Body Problem" is an authoritative, definitive article on a subject which forms a cornerstone of nuclear physics. If we start with two body interactions, then the three-nucleon system is, perhaps, the only many nucleon system whose exact description may lie within the scope of human ingenuity. In recent years some new techniques of scattering theory, origi nating mostly in particle physics, have led to a great deal of new interest in the nuclear three-body problem. In this series we have had two articles (by Mitra and by Duck) on the new approaches.
The present volume reaffirms nuclear physics as an experimental science since the authors are primarily experimentalists and since the treatment of the topics might be said to be "experimental." (This is no reflection on the theoretical competence of any of the authors.) The subject of high-spin phenomena in heavy nuclei has grown much beyond the idea of "backbending" which gave such an impetus to its study five years ago. It is a rich, new field to which Lieder and Ryde have contributed greatly. The article "Valence and Doorway Mechanisms in Resonance Neutron Capture" is, in contradistinction, an article pertaining to one of the oldest branches of nuclear physics-and it brings back one of our previous authors. The Doppler-shift method, reviewed by Alexander and Forster, is one of the important new experimental techniques that emerged in the previous decade. This review is intended, deliberately, to describe thoroughly a classic technique whose elegance epitomizes much of the fascination which nuclear physics techniques have held for a generation of scientists. This volume concludes the work on the Advances in Nuclear Physics series of one of the editors (M. Baranger), whose judgment and style characterize that which is best in the first ten volumes. Many of our readers and most of our authors will be grateful for the high standards which marked his contributions and which often elicited extra labor from the many authors of the series.
In the present volume and in the preceding one we have stretched our normal pattern of reviews by including articles of more major proportions than any we have published before. As a consequence each of these two vol umes contains only three review articles. From the beginning of this series it has been our aim, as editors, to achieve variation in the scope, style, and length of individual articles sufficient to match the needs of the individual topic, rather than to restrain the authors within rigid limits. We feel that the two major articles of Vols. 5 and 6 are entirely justified and do not repre sent unnecessary exuberance on the part of the authors. The article by Michaudon on fission is the first comprehensive account of the developments in this subject, which have placed it in the center of the stage of nuclear physics during the past few years. The discovery of fission isomerism and its dramatic manifestations in the intermediate structure of the neutron cross sections for fissionable isotopes are among the most im portant and interesting events to occur in nuclear physics. These events came as a surprise, and reaffirmed that the strength of nuclear physics lies in the combination of ingenious experiments with simple ideas.
The three articles of the present volume clearly exhibit a wide scope of articles, which is the aim of this series. The article by Kahana and Baltz lies in the main flow of the large stream of work currently in progress with heavy-ion accelerators. A related article by Terry Fortune on "Multinuclear Transfer Reactions with Heavy Ions" is scheduled to appear in the next volume. The article by Whitehead, Watt, Cole, and Morrison pertains to the nuclear-shell model for which a number of articles have appeared in our series. Our very first volume had an article on how SU(3) techniques can, with great elegance, enable one to cope with the sizable number of states within a configuration. But the actual nuclear force is not exactly that yielded by the elegant techniques, and so interest continued in dealing with the large number of states by brute force. Then the Glasgow school of Whitehead et al. discovered that mathematical techniques existed for coping more simply with the lowest eigenvalues of large matrices. The present ar ticle aims generally to make accessible to nuclear physicists the methods developed at Glasgow. The final article by Baer, Crowe, and Truol on radiative pion capture describes a new field of importance because of the advent of the meson factories. More and more pions and muons will become standard tools in nuclear physics.
With the appearance of Volume 3 of our series the review articles them selves can speak for the nature of the series. Our initial aim of charting the field of nuclear physics with some regularity and completeness is, hopefully, beginning to be established. We are greatly indebted to the willing coopera tion of many authors which has kept the series on schedule. By means of the "stream" technique on which our series is based - in which articles emerge from a flow of future articles at the convenience of the authors-the articles appear in this volume without any special coordination of topics. The topics range from the interaction of pions with nuclei to direct reactions in deformed nuclei. There is a great number of additional topics which the series hopes to include. Some of these are indicated by our list of future articles. Some have so far not appeared on our list because the topics have been reviewed re cently in other channels. Much of our series has originated from the sug gestions of our colleagues. We continue to welcome such aid and we continue to need, particularly, more suggestions about experimentalists who might write articles on experimental topics.
The aim of Advances in Nuclear Physics is to provide review papers which chart the field of nuclear physics with some regularity and completeness. We define the field of nuclear physics as that which deals with the structure and behavior of atomic nuclei. Although many good books and reviews on nuclear physics are available, none attempts to provide a coverage which is at the same time continuing and reasonably complete. Many people have felt the need for a new series to fill this gap and this is the ambition of Advances in Nuclear Physics. The articles will be aimed at a wide audience, from research students to active research workers. The selection of topics and their treatment will be varied but the basic viewpoint will be pedagogical. In the past two decades the field of nuclear physics has achieved its own identity, occupying a central position between elementary particle physics on one side and atomic and solid state physics on the other. Nuclear physics is remarkable both by its unity, which it derives from its concise boundaries, and by its amazing diversity, which stems from the multiplicity of experimental approaches and from the complexity of the nucleon-nucleon force. Physicists specializing in one aspect of this strongly unified, yet very complex, field find it imperative to stay well-informed of the other aspects. This provides a strong motivation for a comprehensive series of reviews.
The aim of Advances in Nuclear Physics is to provide review papers which chart the field of nuclear physics with some regularity and completeness. We define the field of nuclear physics as that which deals with the structure and behavior of atomic nuclei. Although many good books and reviews on nuclear physics are available, none attempts to provide a coverage which is at the same time continuing and reasonably complete. Many people have felt the need for a new series to fill this gap and this is the ambition of Advances in Nuclear Physics. The articles will be aimed at a wide audience, from research students to active research workers. The selection of topics and their treatment will be varied but the basic viewpoint will be pedagogical. In the past two decades the field of nuclear physics has achieved its own identity, occupying a central position between elementary particle physics on one side and atomic and solid state physics on the other. Nuclear physics is remarkable both by its unity, which it derives from its concise boundaries, and by its amazing diversity, which stems from the multiplicity of experimental approaches and from the complexity of the nucleon-nucleon force. Physicists specializing in one aspect of this strongly unified, yet very complex, field find it imperative to stay well-informed of the other aspects. This provides a strong motivation for a comprehensive series of reviews.
As much by chance as by design, the present volume comes closer to having a single theme than any of our earlier volumes. That theme is the properties of nuclear strength functions or, alternatively, the problem of line spreading. The line spreading or strength function concepts are essential for the nucleus because of its many degrees of freedom. The description of the nucleus is approached by using model wave functions-for example, the shell model or the collective model-in which one has truncated the number of degrees of freedom. The question then is how closely do the model wave functions correspond to the actual nuclear wave functions which enjoy all the degrees of freedom of the nuclear Hamiltonian? More precisely, one views the model wave functions as vectors in a Hilbert space and one views the actual wave functions as vectors spanning another, larger Hilbert space. Then the question is: how is a single-model wave function (or vector) spread among the vectors corresponding to the actual wave functions? As an example we consider a model state which is a shell-model wave function with a single nucleon added to a closed shell. Such a model state is called a single-particle wave function. At the energy of the single-particle waVe function one of the actual nuclear wave functions may resemble the single-particle wave function closely.
The aim of Advances in Nuclear Physics is to provide review papers which chart the field of nuclear physics with some regularity and completeness. We define the field of nuclear physics as that which deals with the structure and behavior of atomic nuclei. Although many good books and reviews on nuclear physics are available, none attempts to provide a coverage which is at the same time continuing and reasonably complete. Many people have felt the need for a new series to fill this gap and this is the ambition of Advances in Nuclear Physics. The articles will be aimed at a wide audience, from research students to active research workers. The selection of topics and their treatment will be varied but the basic viewpoint will be pedagogical. In the past two decades the field of nuclear physics has achieved its own identity, occupying a central position between elementary particle physics on one side and atomic and solid state physics on the other. Nuclear physics is remarkable both by its unity, which it derives from its concise boundaries, and by its amazing diversity, which stems from the multiplicity of experimental approaches and from the complexity of the nucleon-nucleon force. Physicists specializing in one aspect of this strongly unified, yet very complex, field find it imperative to stay well-informed of the other aspects. This provides a strong motivation for a comprehensive series of reviews.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.