At the end of the nineteenth century, controversy arose as to precisely when the first glial cells originate during development of the central nervous system, and to date, the issue has not been satisfactorily resolved. His (1889, 1890) noted that, even in the earliest developmental stages of the germinallayer, there appeared to be two distinct cell types. The cells which he called Spongioblasten were thought to be glial precursors from which all mature glial cells derive; Keimzellen, in contrast, were regarded as forming 1 neurons. His was working on the assumption that the very first preneurons migrate into a preexisting framework of glial eelIs. In contrast to this view, Schaper (1897) regarded both Keimzellen and Spongioblasten as belonging to a common population of proliferating and pluripotent stem cells which begin differentiation into glial and neuronal cells at late developmental stages. It is this latter view which is the basis of the most recent studies on the subject (e. g., Caley and Maxwell1968a, 1968b; DeVitry et al. 1980). The concept of one common stem cell seemed to be supported both by experiments using 3H-thymidine autoradiography (Fujita 1963, 1965b, 1966; Sauer and Walker 1959; Sidman et al. 1959) and by ultrastructural studies (Fu jita 1966; Hinds and Ruffet 1971; Wechseler and Meller 1967) indicating that structural differences, which His presumably used to define his two cell types, could be related to different stages of the mitotic cycle.
The basic thesis for this study was that the telencephalon is needed to make decisions in new situations. Subsidary hypotheses were that the telencephalon consists of: (a) a sensorimotor system which generates motor activity from sensory input and (b) a selection system which makes choices from possible motor programs. It was postulated that the selection system should fulfil the following requirements: be accessible for past and present events, have the capacity to process this information in a nondetermined way with a possibility for ordering, and have access to motor-affecting systems (the sensorimotor system). The ability of the selection system to correlate information in a nonpredetermined way was considered most important. In short: The selection system should be able to associate any information in any combination, and have the capability for internal control of neuronal activity and external selection of motor programs (see Fig. IA. ) Xenopus laevis was chosen as a subject, since it has a relatively simple tel encephalon, with characteristics that it shares with "primitive" species of different vertebrate classes, and because it is easy to maintain as a laboratory animal. The main method used was the determination of connections with HRP. The pallium was in the focus of attention, since it was considered to be the core of the selection system. Immunohistochemistry was used as an additional parameter to compare Xenopus laevis forebrain with those of other vertebrates.
It is well established that glial cells represent more than mere passive cytoskeletal support elements of the central and peripheral nervous system. A reciprocal relationship exists between neurons and glia that is vital for mutual differentiation, development, and functioning of both cell types. It also has become apparent that perturbations in glial function may lead to deleterious consequences in juxtaposed neurons. It is therefore possible that neuronal damage induced by chemicals or neuropathic disease involves dissociation of glial-neuronal interactions. The Role of Glia in Neurotoxicity brings together experts in the neurosciences to provide a more complete understanding of the effects of chemicals on nervous system function. This book explores potential sites of glial-neuronal interactions both in the central and peripheral nervous system, focusing on potential sites of neurotoxicant actions. Text introduces basic aspects of neuroscience, the first step toward understanding the mechanisms at work in normal physiology. The ways in which these processes are disturbed in pathological conditions are discussed. Distinguished authors examine the functional interactions between glial cells and neurons during development, adulthood, and senescence. The roles of glia in the normal CNS and PNS are described. The book offers specific, in-depth examples of directly (via diffusive and cell surface signals) or indirectly (via effects on the extracellular fluid or the blood-brain barrier) mediated glial neurotoxicity. This reference includes different techniques, conceptual frameworks, and approaches that are currently used in the study of the role of glia in neurotoxicity. This timely review not only presents an excellent overview of the state of the science but also provides direction for future research into the consequences of an altered glial-neuronal unit.
Holquist's masterly study draws on all of Bakhtin's known writings providing a comprehensive account of his achievement. Widely acknowledged as an exceptional guide to Bakhtin and dialogics, this book now includes a new introduction, concluding chapter and a fully updated bibliography. He argues that Bakhtin's work gains coherence through his commitment to the concept of dialogue, examining Bakhtin's dialogues with theorists such as Saussure, Freud, Marx and Lukacs, as well as other thinkers whose connection with Bakhtin has previously been ignored. Dialogism also includes dialogic readings of major literary texts, Mary Shelley's Frankenstein, Gogol's The Notes of a Madman and Fitzgerald's The Great Gatsby, which provide another dimension of dialogue with dialogue.
This bibliography in two volumes, originally published in 1988, lists and describes works by and about Jacques Lacan published in French, English, and seven other languages including Japanese and Russian. It incorporates and corrects where necessary all information from earlier published bibliographies of Lacan’s work. Also included as background works are books and essays that discuss Lacan in the course of a more general study, as well as all relevant items in various bibliographic sources from many fields.
The central goal of this book is to provide a state-of-the-art overview of the literature with respect to the economic analysis of tort law. It sure meets the challenge, offering with great expertise a comprehensive presentation of tort law in both economic and comparative perspectives. The clarity of the text, unusual in the law and economics literature, makes the book accessible to a broad readership of economists with a limited legal background and lawyers with limited economic skills. Olivier Moreteau, Louisiana State University, US Tort Law and Economics, ed. Michael Faure, provides a highly useful economic overview of the most important topics of tort law. The authors clearly show the main developments of the discussion, examining the results of recent studies and stating their own opinions. Detailed bibliographies are included. The volume has to be warmly recommended to friends and foes of economic analysis who are provided with a comprehensive update in this field while also indicating areas which critics have to focus on. Helmut Koziol, European Centre of Tort and Insurance Law, Austria This volume provides a state-of-the-art overview of the literature on the economic analysis of tort law. In sixteen chapters, the specialist authors guide the reader through the often vast literature in each domain providing a balanced and comprehensive summary. Particular attention is paid to the evolution of the field, further refinements to economic models and relevant conclusions and lessons for the policymaker. Tort Law and Economics is part of the Encyclopedia of Law and Economics, and enables readers, some not familiar with law and economics, to obtain an insight in the relevant economic literature concerning tort law and economics. This book will be of interest to lawyers and economists, practitioners and academics interested in accident law, tort law, insurance and regulation. It will also appeal to students in economic analysis of law and policymakers working on prevention of accidents, tort law or compensation of accident victims.
This bibliography in two volumes, originally published in 1988, lists and describes works by and about Jacques Lacan published in French, English, and seven other languages including Japanese and Russian. It incorporates and corrects where necessary all information from earlier published bibliographies of Lacan’s work. Also included as background works are books and essays that discuss Lacan in the course of a more general study, as well as all relevant items in various bibliographic sources from many fields.
Activity within neural circuits shapes the synaptic properties of component neurons in a manner that maintains stable excitatory drive, a process referred to as homeostatic plasticity. These potent and adaptive mechanisms have been demonstrated to modulate activity at the level of an individual neuron, synapse, circuit, or entire network, and dysregulation at some or all of these levels may contribute to neuropsychiatric disorders, intellectual disability, and epilepsy. Greater mechanistic understanding of homeostatic plasticity will provide key insights into the etiology of these disorders, which may result from network instability and synaptic dysfunction. Over the past 15 years, the molecular mechanisms of this form of plasticity have been intensely studied in various model organisms, including invertebrates and vertebrates. Though once thought to have a predominantly postsynaptic basis, emerging evidence suggests that homeostatic mechanisms act on both sides of the synapse through mechanisms such as retrograde signaling, to orchestrate compensatory adaptations that maintain stable network function. These trans-synaptic signaling systems ultimately alter neurotransmitter release probability by a variety of mechanisms including changes in vesicle pool size and calcium influx. These adaptations are not expected to occur homogenously at all terminals of a pre-synaptic neuron, as they might synapse with neurons in non-overlapping circuits. However, the factors that govern the homeostatic control of synapse-specific plasticity are only beginning to be understood. In addition to our limited molecular understanding of pre-synaptic homeostatic plasticity, very little is known about its prevalence in vivo or its physiological and disease relevance. In this research topic, we aim to fill the aforementioned void by covering a broad range of topics that include: - Identification of signaling pathways and mechanisms that operate globally or locally to induce specific pre-synaptic adaptations - The nature of pre-synaptic ion channels relevant to this form of plasticity and their synapse-specific modulation and trafficking - Development and utilization of new tools or methods to study homeostatic plasticity in axons and pre-synaptic terminals - Novel mechanisms of homeostatic adaptations in pre-synaptic neurons - Postsynaptic sensors of activity and retrograde synaptic signaling systems - A comprehensive analysis of the kinds of pre-synaptic adaptations in diverse neural circuits and cell types - Identification of physiological or developmental conditions that promote pre-synaptic homeostatic adaptations - How activity-dependent (Hebbian) and homeostatic synaptic changes are integrated to both permit sufficient flexibility and maintain stable activity - Relevance of pre-synaptic homeostatic plasticity to the etiology of neuropsychiatric disorders - Computational modeling of pre-synaptic homeostatic plasticity and network stability.
The basic thesis for this study was that the telencephalon is needed to make decisions in new situations. Subsidary hypotheses were that the telencephalon consists of: (a) a sensorimotor system which generates motor activity from sensory input and (b) a selection system which makes choices from possible motor programs. It was postulated that the selection system should fulfil the following requirements: be accessible for past and present events, have the capacity to process this information in a nondetermined way with a possibility for ordering, and have access to motor-affecting systems (the sensorimotor system). The ability of the selection system to correlate information in a nonpredetermined way was considered most important. In short: The selection system should be able to associate any information in any combination, and have the capability for internal control of neuronal activity and external selection of motor programs (see Fig. IA. ) Xenopus laevis was chosen as a subject, since it has a relatively simple tel encephalon, with characteristics that it shares with "primitive" species of different vertebrate classes, and because it is easy to maintain as a laboratory animal. The main method used was the determination of connections with HRP. The pallium was in the focus of attention, since it was considered to be the core of the selection system. Immunohistochemistry was used as an additional parameter to compare Xenopus laevis forebrain with those of other vertebrates.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.