This invaluable book is based on lecture notes developed for a one-semester graduate course entitled “Interaction of Radiation with Matter”, taught in the Department of Nuclear Science and Engineering at the Massachusetts Institute of Technology. The main objective of the course is to teach enough quantum and classical radiation theory to allow students in engineering and the applied sciences to understand and have access to the vast literature on applications of ionizing and non-ionizing radiation in materials research.Besides presenting the fundamental physics of radiation interactions, the book devotes individual chapters to some of the important modern-day experimental tools, such as nuclear magnetic resonance, photon correlation spectroscopy, and the various types of neutron, x-ray, and light-scattering techniques. End-of-chapter problems have been added for the new edition, making the book more appropriate as a course textbook.
This book is based on lecture notes developed for a one-semester graduate course entitled “The Interaction of Radiation with Matter”, taught in the Department of Nuclear Engineering at the Massachusetts Institute of Technology. The main objective of the course is to teach enough quantum and classical radiation theory to allow students in engineering and the applied sciences to understand and have access to the vast literature on applications of ionizing and non-ionizing radiation in materials research. Besides presenting the fundamental physics of radiation interactions, the book devotes individual chapters to some of the important modern-day experimental tools, such as nuclear magnetic resonance, photon correlation spectroscopy, and the various types of neutron, x-ray and light-scattering techniques.
This invaluable book is based on lecture notes developed for a one-semester graduate course entitled “Interaction of Radiation with Matter”, taught in the Department of Nuclear Science and Engineering at the Massachusetts Institute of Technology. The main objective of the course is to teach enough quantum and classical radiation theory to allow students in engineering and the applied sciences to understand and have access to the vast literature on applications of ionizing and non-ionizing radiation in materials research.Besides presenting the fundamental physics of radiation interactions, the book devotes individual chapters to some of the important modern-day experimental tools, such as nuclear magnetic resonance, photon correlation spectroscopy, and the various types of neutron, x-ray, and light-scattering techniques. End-of-chapter problems have been added for the new edition, making the book more appropriate as a course textbook.
This book is based on lecture notes developed for a one-semester graduate course entitled “The Interaction of Radiation with Matter”, taught in the Department of Nuclear Engineering at the Massachusetts Institute of Technology. The main objective of the course is to teach enough quantum and classical radiation theory to allow students in engineering and the applied sciences to understand and have access to the vast literature on applications of ionizing and non-ionizing radiation in materials research. Besides presenting the fundamental physics of radiation interactions, the book devotes individual chapters to some of the important modern-day experimental tools, such as nuclear magnetic resonance, photon correlation spectroscopy, and the various types of neutron, x-ray and light-scattering techniques.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.