This book is a research monograph on high-Frequency Seafloor Acoustics. It is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. It provides a critical evaluation of the data and models pertaining to high-frequency acoustic interaction with the seafloor, which will be of interest to researchers in underwater acoustics and to developers of sonars. Models and data are presented so as to be readily usable, backed up by extensive explanation. Much of the data is new, and the discussion in on two levels: concise descriptions in the main text backed up by extensive technical appendices.
The finite element method (FEM) is the dominant tool for numerical analysis in engineering, yet many engineers apply it without fully understanding all the principles. Learning the method can be challenging, but Mike Gosz has condensed the basic mathematics, concepts, and applications into a simple and easy-to-understand reference. Finite Element Method: Applications in Solids, Structures, and Heat Transfer navigates through linear, linear dynamic, and nonlinear finite elements with an emphasis on building confidence and familiarity with the method, not just the procedures. This book demystifies the assumptions made, the boundary conditions chosen, and whether or not proper failure criteria are used. It reviews the basic math underlying FEM, including matrix algebra, the Taylor series expansion and divergence theorem, vectors, tensors, and mechanics of continuous media. The author discusses applications to problems in solid mechanics, the steady-state heat equation, continuum and structural finite elements, linear transient analysis, small-strain plasticity, and geometrically nonlinear problems. He illustrates the material with 10 case studies, which define the problem, consider appropriate solution strategies, and warn against common pitfalls. Additionally, 35 interactive virtual reality modeling language files are available for download from the CRC Web site. For anyone first studying FEM or for those who simply wish to deepen their understanding, Finite Element Method: Applications in Solids, Structures, and Heat Transfer is the perfect resource.
Aircraft Engineering Principles is the essential text for anyone studying for licensed A&P or Aircraft Maintenance Engineer status. The book is written to meet the requirements of JAR-66/ECAR-66, the Joint Aviation Requirement (to be replaced by European Civil Aviation Regulation) for all aircraft engineers within Europe, which is also being continuously harmonised with Federal Aviation Administration requirements in the USA. The book covers modules 1, 2, 3, 4 and 8 of JAR-66/ECAR-66 in full and to a depth appropriate for Aircraft Maintenance Certifying Technicians, and will also be a valuable reference for those taking ab initio programmes in JAR-147/ECAR-147 and FAR-147. In addition, the necessary mathematics, aerodynamics and electrical principles have been included to meet the requirements of introductory Aerospace Engineering courses. Numerous written and multiple choice questions are provided at the end of each chapter, to aid learning.
Covering principles and applications of analog and digital electronics, this volume is an ideal pre-degree text covering major areas of 21st century electronics.
Salt tectonics is the study of how and why salt structures evolve and the three-dimensional forms that result. A fascinating branch of geology in itself, salt tectonics is also vitally important to the petroleum industry. Covering the entire scale from the microscopic to the continental, this textbook is an unrivalled consolidation of all topics related to salt tectonics: evaporite deposition and flow, salt structures, salt systems, and practical applications. Coverage of the principles of salt tectonics is supported by more than 600 color illustrations, including 200 seismic images captured by state-of-the-art geophysical techniques and tectonic models from the Applied Geodynamics Laboratory at the University of Texas, Austin. These combine to provide a cohesive and wide-ranging insight into this extremely visual subject. This is the definitive practical handbook for professional geologists and geophysicists in the petroleum industry, an invaluable textbook for graduate students, and a reference textbook for researchers in various geoscience fields.
The use of diffraction imaging to complement the seismic reflection method is rapidly gaining momentum in the oil and gas industry. As the industry moves toward exploiting smaller and more complex conventional reservoirs and extensive new unconventional resource plays, the application of the seismic diffraction method to image sub-wavelength features such as small-scale faults, fractures and stratigraphic pinchouts is expected to increase dramatically over the next few years. “Seismic Diffraction” covers seismic diffraction theory, modeling, observation, and imaging. Papers and discussion include an overview of seismic diffractions, including classic papers which introduced the potential of diffraction phenomena in seismic processing; papers on the forward modeling of seismic diffractions, with an emphasis on the theoretical principles; papers which describe techniques for diffraction mathematical modeling as well as laboratory experiments for the physical modeling of diffractions; key papers dealing with the observation of seismic diffractions, in near-surface-, reservoir-, as well as crustal studies; and key papers on diffraction imaging.
For the first time, the 92-metre frieze of the Voortrekker Monument in Pretoria, one of the largest historical narratives in marble, has been made the subject of a book. The pictorial narrative of the Boer pioneers who conquered South Africa’s interior during the 'Great Trek' (1835-52) represents a crucial period of South Africa’s past. Conceptualising the frieze both reflected on and contributed to the country’s socio-political debates in the 1930s and 1940s when it was made. The book considers the active role the Monument played in the rise of Afrikaner nationalism and the development of apartheid, as well as its place in post-apartheid heritage. The frieze is unique in that it provides rare evidence of the complex processes followed in creating a major monument. Based on unpublished documents, drawings and models, these processes are unfolded step by step, from the earliest discussions of the purpose and content of the frieze, through all the stages of its design, to its shipping to post-war Italy to be copied into marble from Monte Altissimo, up to its final installation in the Monument. The book examines how visual representation transforms historical memory in what it chooses to recount, and the forms in which it is depicted. The second volume expands on the first, by investigating each of the twenty-seven scenes of the frieze in depth, providing new insights into not only the frieze, but also South Africa’s history. François van Schalkwyk of African Minds, co-publisher with De Gruyter writes: From Memory to Marble is an open access monograph in the true sense of the word. Both volumes of the digital version of the book are available in full and free of charge from the date of publication. This approach to publishing democratises access to the latest scholarly publications across the globe. At the same time, a book such as From Memory to Marble, with its unique and exquisite photographs of the frieze as well as its wealth of reproduced archival materials, demands reception of a more traditional kind, that is, on the printed page. For this reason, the book is likewise available in print as two separate volumes. The printed and digital books should not be seen as separate incarnations; each brings its own advantages, working together to extend the reach and utility of From Memory to Marble to a range of interested readers. For more material you can browse at Stanford's database "Voortrekker Monumentality: a digital archive".
In summary, Professor Slawinski has written an engaging volume covering an unfamiliar topic in a highly accessible fashion. Non-specialists will gain a significant appreciation of the unique complexities associated with seismology.'Contemporary PhysicsThe author dedicates this book to readers who are concerned with finding out the status of concepts, statements and hypotheses, and with clarifying and rearranging them in a logical order. It is thus not intended to teach tools and techniques of the trade, but to discuss the foundations on which seismology — and in a larger sense, the theory of wave propagation in solids — is built. A key question is: why and to what degree can a theory developed for an elastic continuum be used to investigate the propagation of waves in the Earth, which is neither a continuum nor fully elastic. But the scrutiny of the foundations goes much deeper: material symmetry, effective tensors, equivalent media; the influence (or, rather, the lack thereof) of gravitational and thermal effects and the rotation of the Earth, are discussed ab initio. The variational principles of Fermat and Hamilton and their consequences for the propagation of elastic waves, causality, Noether's theorem and its consequences on conservation of energy and conservation of linear momentum are but a few topics that are investigated in the process to establish seismology as a science and to investigate its relation to subjects like realism and empiricism in natural sciences, to the nature of explanations and predictions, and to experimental verification and refutation.In the second edition, new sections, figures, examples, exercises and remarks are added. Most importantly, however, four new appendices of about one-hundred pages are included, which can serve as a self-contained continuum-mechanics course on finite elasticity. Also, they broaden the scope of elasticity theory commonly considered in seismology.
This book presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology. The book brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. This text is the first to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. The first part is an introduction to inversion theory. The second part contains a description of the basic methods of solution of the linear and nonlinear inverse problems using regularization. The following parts treat the application of regularization methods in gravity and magnetic, electromagnetic, and seismic inverse problems. The key connecting idea of these applied parts of the book is the analogy between the solutions of the forward and inverse problems in different geophysical methods. The book also includes chapters related to the modern technology of geophysical imaging, based on seismic and electromagnetic migration.This volume is unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on inversion theory.
This is the first publication to describe the evolution of fluid dynamics as a major field in modern science and engineering. It contains a description of the interaction between applied research and application, taking as its example the history of fluid mechanics in the 20th century. The focus lies on the work of Ludwig Prandtl, founder of the aerodynamic research center (AVA) in Gottingen, whose ideas and publications have influenced modern aerodynamics and fluid mechanics in many fields. While suitable for others, this book is intended for natural scientists and engineers as well as historians of science and technology.
Continuum Mechanics is a branch of physical mechanics that describes the macroscopic mechanical behavior of solid or fluid materials considered to be continuously distributed. It is fundamental to the fields of civil, mechanical, chemical and bioengineering. This time-tested text has been used for over 35 years to introduce junior and senior-level undergraduate engineering students, as well as graduate students, to the basic principles of continuum mechanics and their applications to real engineering problems. The text begins with a detailed presentation of the coordinate invariant quantity, the tensor, introduced as a linear transformation. This is then followed by the formulation of the kinematics of deformation, large as well as very small, the description of stresses and the basic laws of continuum mechanics. As applications of these laws, the behaviors of certain material idealizations (models) including the elastic, viscous and viscoelastic materials, are presented. This new edition offers expanded coverage of the subject matter both in terms of details and contents, providing greater flexibility for either a one or two-semester course in either continuum mechanics or elasticity. Although this current edition has expanded the coverage of the subject matter, it nevertheless uses the same approach as that in the earlier editions - that one can cover advanced topics in an elementary way that go from simple to complex, using a wealth of illustrative examples and problems. It is, and will remain, one of the most accessible textbooks on this challenging engineering subject. - Significantly expanded coverage of elasticity in Chapter 5, including solutions of some 3-D problems based on the fundamental potential functions approach - New section at the end of Chapter 4 devoted to the integral formulation of the field equations - Seven new appendices appear at the end of the relevant chapters to help make each chapter more self-contained - Expanded and improved problem sets providing both intellectual challenges and engineering applications
Tammaro's College Physics, First Edition will convert more students from passive to active learners through a unique presentation of material built from the ground up in a digital environment. When students become "active" learners, they study "smarter" by spending time on content that will help them improve their understanding of key concepts (NOT skipping straight to the problems to find out what they don't know). College Physics, First Edition utilizes an assignable, module structure with frequent assessment check points at various difficulty levels to ensure maximum points of student engagement and retention.
Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas.
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps and provides all the necessary details. Topical coverage includes: First-Order Differential Equations Higher-Order Linear Equations Applications of Higher-Order Linear Equations Systems of Linear Differential Equations Laplace Transform Series Solutions Systems of Nonlinear Differential Equations In addition to plentiful exercises and examples throughout, each chapter concludes with a summary that outlines key concepts and techniques. The book's design allows readers to interact with the content, while hints, cautions, and emphasis are uniquely featured in the margins to further help and engage readers. Written in an accessible style that includes all needed details and steps, Ordinary Differential Equations is an excellent book for courses on the topic at the upper-undergraduate level. The book also serves as a valuable resource for professionals in the fields of engineering, physics, and mathematics who utilize differential equations in their everyday work. An Instructors Manual is available upon request. Email sfriedman@wiley.com for information. There is also a Solutions Manual available. The ISBN is 9781118398999.
A strong point of this book is its coverage of tensor theory, which is herein deemed both more readable and more substantial than many other historic continuum mechanics books. The book is self-contained. It serves admirably as a reference resource on fundamental principles and equations of tensor mathematics applied to continuum mechanics. Exercises and problem sets are useful for teaching … The book is highly recommended as both a graduate textbook and a reference work for students and more senior researchers involved in theoretical and mathematical modelling of continuum mechanics of materials. Key concepts are well described in the text and are supplemented by informative exercises and problem sets with solutions, and comprehensive Appendices provide important equations for ease of reference.'Contemporary PhysicsA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas.The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics.
By focusing on the conceptual issues faced by nineteenth century physicists, this book clarifies the status of field theory, the ether, and thermodynamics in the work of the period. A remarkably synthetic account of a difficult and fragmentary period in scientific development.
John Joseph Mathews (1894–1979) is one of Oklahoma’s most revered twentieth-century authors. An Osage Indian, he was also one of the first Indigenous authors to gain national renown. Yet fame did not come easily to Mathews, and his personality was full of contradictions. In this captivating biography, Michael Snyder provides the first book-length account of this fascinating figure. Known as “Jo” to all his friends, Mathews had a multifaceted identity. A novelist, naturalist, biographer, historian, and tribal preservationist, he was a true “man of letters.” Snyder draws on a wealth of sources, many of them previously untapped, to narrate Mathews’s story. Much of the writer’s family life—especially his two marriages and his relationships with his two children and two stepchildren—is explored here for the first time. Born in the town of Pawhuska in Indian Territory, Mathews attended the University of Oklahoma before venturing abroad and earning a second degree from Oxford. He served as a flight instructor during World War I, traveled across Europe and northern Africa, and bought and sold land in California. A proud Osage who devoted himself to preserving Osage culture, Mathews also served as tribal councilman and cultural historian for the Osage Nation. Like many gifted artists, Mathews was not without flaws. And perhaps in the eyes of some critics, he occupies a nebulous space in literary history. Through insightful analysis of his major works, especially his semiautobiographical novel Sundown and his meditative Talking to the Moon, Snyder revises this impression. The story he tells, of one remarkable individual, is also the story of the Osage Nation, the state of Oklahoma, and Native America in the twentieth century.
This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.
Integral Transforms of Geophysical Fields serve as one of the major tools for processing and interpreting geophysical data. In this book the authors present a unified treatment of this theory, ranging from the techniques of the transfor- mation of 2-D and 3-D potential fields to the theory of se- paration and migration of electromagnetic and seismic fields. Of interest primarily to scientists and post-gradu- ate students engaged in gravimetrics, but also useful to geophysicists and researchers in mathematical physics.
Geophysical Inverse Theory and Applications, Second Edition, brings together fundamental results developed by the Russian mathematical school in regularization theory and combines them with the related research in geophysical inversion carried out in the West. It presents a detailed exposition of the methods of regularized solution of inverse problems based on the ideas of Tikhonov regularization, and shows the different forms of their applications in both linear and nonlinear methods of geophysical inversion. It's the first book of its kind to treat many kinds of inversion and imaging techniques in a unified mathematical manner.The book is divided in five parts covering the foundations of the inversion theory and its applications to the solution of different geophysical inverse problems, including potential field, electromagnetic, and seismic methods. Unique in its focus on providing a link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, it represents an exhaustive treatise on inversion theory.Written by one of the world's foremost experts, this work is widely recognized as the ultimate researcher's reference on geophysical inverse theory and its practical scientific applications. - Presents state-of-the-art geophysical inverse theory developed in modern mathematical terminology—the first to treat many kinds of inversion and imaging techniques in a unified mathematical way - Provides a critical link between the methods used in gravity, electromagnetic, and seismic imaging and inversion, and represents an exhaustive treatise on geophysical inversion theory - Features more than 300 illustrations, figures, charts and graphs to underscore key concepts - Reflects the latest developments in inversion theory and applications and captures the most significant changes in the field over the past decade
An Introduction to Mechanical Engineering is an essential text for all first-year undergraduate students as well as those studying for foundation degrees and HNDs. The text gives a thorough grounding in the following core engineering topics: thermodynamics, fluid mechanics, solid mechanics, dynamics, electricals and electronics, and materials science. As well as mechanical engineers, the text will be highly relevant to civil, automotive, aeronautical/aerospace and general engineering students. The text is written by an experienced team of first-year lecturers at the internationally renowned University of Nottingham. The material in this book has full student and lecturer support on an accompanying website at http://cw.tandf.co.uk/mechanicalengineering/, which includes: worked examples of exam-style questions multiple-choice self-assessment revision guides.
Astronomy is a fun and challenging science for students. This manual is intended for one- and two-semester astronomy courses and uses hands-on, engaging activities to get students looking at the sky and developing a lifelong interest in astronomy.
FORENSIC CHEMISTRY FUNDAMENTALS strives to help scientists & lawyers, & students, understand how their two disciplines come together for forensic science, in the contexts of analytical chemistry & related science more generally, and the common law systems of Canada, USA, UK, the Commonwealth. In this book, forensics is considered more generally than as only for criminal law; workplace health & safety, and other areas are included. And, two issues of Canadian legal process are argued as essays in the fi nal two chapters.
Contains a history of the subjects of weather and climate, over 2,200 entries providing definitions and explanations of related topics, plus brief biographies of over 100 scientists.
This book is intended to be a follow on to a basic circuit analysis text that can be offered in an upper level term. It could also be used by students as supplementary material for self study and as an additional source of information. Problem solutions are provided for all the problems in the book in order to provide the student with an extensive source of worked examples. The book covers advanced circuit analysis using the Laplace transform, system analysis in the frequency domain using Bode plots, and the design of passive and active filter circuits. Visit author Facebook Page at: facebook.com/HMichaelThomas.Books
Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness.
This is a non-calculus based circuit analysis text that can be offered in the first term. It could also be used by students as supplementary material for self study and as an additional source of information. Problem solutions are provided for all the problems in the book in order to provide the student with an extensive source of worked examples. Both DC and AC steady state circuit analysis are covered by introducing circuit analysis concepts with DC circuits containing sources and resistors using simpler math and then expanding the analysis to AC circuits containing sinusoidal sources, resistors, capacitors, and inductors using more complex math. Topics such as series, parallel, and series/parallel circuits, Ohm’s law, Kirchhoff’s voltage and current laws, voltage and current divider rules, superposition, Thevenin and Norton equivalent circuits, Pi-T circuit transformations, nodal voltage analysis method, frequency analysis, and Bode plots are covered. Visit author Facebook Page at: facebook.com/HMichaelThomas.Books
Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.
Understanding Physics – Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable students to proceed easily to subsequent courses in physics and may be used to support such courses. Mathematical methods (in particular, calculus and vector analysis) are introduced within the text as the need arises and are presented in the context of the physical problems which they are used to analyse. Particular aims of the book are to demonstrate to students that the easiest, most concise and least ambiguous way to express and describe phenomena in physics is by using the language of mathematics and that, at this level, the total amount of mathematics required is neither large nor particularly demanding. 'Modern physics' topics (relativity and quantum mechanics) are introduced at an earlier stage than is usually found in introductory textbooks and are integrated with the more 'classical' material from which they have evolved. This book encourages students to develop an intuition for relativistic and quantum concepts at as early a stage as is practicable. The text takes a reflective approach towards the scientific method at all stages and, in keeping with the title of the text, emphasis is placed on understanding of, and insight into, the material presented.
Single source reference on how applying thermal spreading and contact resistance can solve problems across a variety of engineering fields Thermal Spreading and Contact Resistance offers comprehensive coverage of the key information that engineers need to know to understand thermal spreading and contact resistance, including numerous predictive models for determining thermal spreading resistance and contact conductance of mechanical joints and interfaces, plus detailed examples throughout the book. Written by two of the leading experts in the field, Thermal Spreading and Contact Resistance includes information on: Contact conductance, mass transfer, transport from super-hydrophobic surfaces, droplet/surface phase change problems, and tribology applications such as sliding surfaces and roller bearings Heat transfer in micro-devices and thermal spreaders, orthotropic systems, and multi-source applications for electronics thermal management applications Fundamental principles, thermal spreading in isotropic half-space regions, circular flux tubes and disc spreaders, and rectangular flux channels and compound spreaders Systems with non-uniform sink plane conductance, transient spreading resistance, and contact resistance between both non-conforming and conforming rough surfaces Providing comprehensive coverage of the subject, Thermal Spreading and Contact Resistance is an essential resource for mechanical, aerospace, and chemical engineers working on research in the fields of heat transfer, thermal management of electronics, and tribology, as well as thermal engineers and researchers in the field of thermal physics.
The extensive use of little known electronic principles provides something like the Science of Electronics supplementing the Art of Electronics without involvement of too much theory. Whereas art can only be acquired by doing, the knowledge provided by science can be acquired from books. The ready availability of integrated circuits for practically any application reduces the art of electronics to the art of interfacing these integrated components. The practical knowledge required for that art can only be acquired by doing and not by reading. However, it takes a lot of knowledge to select the best integrated component for achieving a specific goal. Such knowledge is provided in this book. By using a holistic approach in the understanding of the various circuits and by taking ample advantage of the duality between the electrical quantities voltage and current, the understanding of the properties of electronic circuits is made easier. Besides, this approach reduces the amount of mathematics needed for a deeper understanding. Thus, this book is appropriate for scholars at the advanced undergraduate level. In particular, the important aspects of positive and negative feedback in circuits are presented in a compact way by introducing the reverse closed-loop-gain. It is quite clear that a single book cannot cover all aspects of both analog and digital electronics, the latter comprising all circuits needed for data manipulation in digital computers – which is a field in itself.
This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.
An Introduction to Mechanical Engineering is an essential text for all first-year undergraduate students as well as those studying for foundation degrees and HNDs. The text gives a thorough grounding in the following core engineering topics: thermodynamics, fluid mechanics, solid mechanics, dynamics, electricals and electronics, and materials scien
An updated and thoroughly revised third edition of the foundational text offering an introduction to physics with a comprehensive interactive website The revised and updated third edition of Understanding Physics presents a comprehensive introduction to college-level physics. Written with today's students in mind, this compact text covers the core material required within an introductory course in a clear and engaging way. The authors – noted experts on the topic – offer an understanding of the physical universe and present the mathematical tools used in physics. The book covers all the material required in an introductory physics course. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable students to proceed easily to subsequent courses in physics and may be used to support such courses. Relativity and quantum mechanics are introduced at an earlier stage than is usually found in introductory textbooks and are integrated with the more 'classical' material from which they have evolved. Worked examples and links to problems, designed to be both illustrative and challenging, are included throughout. The links to over 600 problems and their solutions, as well as links to more advanced sections, interactive problems, simulations and videos may be made by typing in the URL’s which are noted throughout the text or by scanning the micro QR codes given alongside the URL’s, see: http://up.ucc.ie This new edition of this essential text: Offers an introduction to the principles for each topic presented Presents a comprehensive yet concise introduction to physics covering a wide range of material Features a revised treatment of electromagnetism, specifically the more detailed treatment of electric and magnetic materials Puts emphasis on the relationship between microscopic and macroscopic perspectives Is structured as a foundation course for undergraduate students in physics, materials science and engineering Has been rewritten to conform with the revised definitions of SI base units which came into force in May 2019 Written for first year physics students, the revised and updated third edition of Understanding Physics offers a foundation text and interactive website for undergraduate students in physics, materials science and engineering.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.