Este libro explica las aplicaciones específicas y las interpretaciones del biplot en muchas áreas del análisis multivariante. regresión, modelos lineales generalizados, análisis de componentes principales, análisis de correspondencias y análisis discriminante.
Drawing on the author’s experience in social and environmental research, Correspondence Analysis in Practice, Second Edition shows how the versatile method of correspondence analysis (CA) can be used for data visualization in a wide variety of situations. This completely revised, up-to-date edition features a didactic approach with self-contained chapters, extensive marginal notes, informative figure and table captions, and end-of-chapter summaries. New to the Second Edition • Five new chapters on transition and regression relationships, stacked tables, subset correspondence analysis, analysis of square tables, and canonical correspondence analysis • Substantially more figures and tables than the first edition • A computational appendix that provides the R commands that correspond to most of the analyses featured throughout the book, making it easy for readers to reproduce the analyses With 33 years of CA experience, the expert author demonstrates how to use uncomplicated, relatively nonmathematical techniques to translate complex tabular data into more readable graphical forms. CA and its variants multiple CA (MCA) and joint CA (JCA) are suitable for analyses in various fields, including marketing research, the social and environmental sciences, biochemistry, and more.
A unique and timely monograph, Visualization of Categorical Data contains a useful balance of theoretical and practical material on this important new area. Top researchers in the field present the books four main topics: visualization, correspondence analysis, biplots and multidimensional scaling, and contingency table models.This volume discusses how surveys, which are employed in many different research areas, generate categorical data. It will be of great interest to anyone involved in collecting or analyzing categorical data.* Correspondence Analysis* Homogeneity Analysis* Loglinear and Association Models* Latent Class Analysis* Multidimensional Scaling* Cluster Analysis* Ideal Point Discriminant Analysis* CHAID* Formal Concept Analysis* Graphical Models
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.