Learn to apply modeling and parameter estimation tools and strategies to chemicalprocesses using your personal computer This book introduces readers to powerful parameter estimation and computational methods for modeling complex chemical reactions and reaction processes. It presents useful mathematical models, numerical methods for solving them, and statistical methods for testing and discriminating candidate models with experimental data. Topics covered include: Chemical reaction models Chemical reactor models Probability and statistics Bayesian estimation Process modeling with single-response data Process modeling with multi-response data Computer software (Athena Visual Studio) is available via a related Web site http://www.athenavisual.com enabling readers to carry out parameter estimation based on their data and to carry out process modeling using these parameters. As an aid to the reader, an appendix of example problems and solutions is provided. Computer-Aided Modeling of Reactive Systems is an ideal supplemental text for advanced undergraduates and graduate students in chemical engineering courses, while it also serves as a valuable resource for practitioners in industry who want to keep up to date on the most current tools and strategies available.
In the past two decades, new modeling efforts have gradually incorporated more molecular and structural detail in response to environmental and technical interests. Molecular Modeling in Heavy Hydrocarbon Conversions introduces a systematic molecule-based modeling approach with a system of chemical engineering software tools that can automate the e
Symbolic regression (SR) is one of the most powerful machine learning techniques that produces transparent models, searching the space of mathematical expressions for a model that represents the relationship between the predictors and the dependent variable without the need of taking assumptions about the model structure. Currently, the most prevalent learning algorithms for SR are based on genetic programming (GP), an evolutionary algorithm inspired from the well-known principles of natural selection. This book is an in-depth guide to GP for SR, discussing its advanced techniques, as well as examples of applications in science and engineering. The basic idea of GP is to evolve a population of solution candidates in an iterative, generational manner, by repeated application of selection, crossover, mutation, and replacement, thus allowing the model structure, coefficients, and input variables to be searched simultaneously. Given that explainability and interpretability are key elements for integrating humans into the loop of learning in AI, increasing the capacity for data scientists to understand internal algorithmic processes and their resultant models has beneficial implications for the learning process as a whole. This book represents a practical guide for industry professionals and students across a range of disciplines, particularly data science, engineering, and applied mathematics. Focused on state-of-the-art SR methods and providing ready-to-use recipes, this book is especially appealing to those working with empirical or semi-analytical models in science and engineering.
A guide to the theoretical underpinnings and practical applications of chemically reacting flow Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition combines fundamental concepts in fluid mechanics and physical chemistry while helping students and professionals to develop the analytical and simulation skills needed to solve real-world engineering problems. The authors clearly explain the theoretical and computational building blocks enabling readers to extend the approaches described to related or entirely new applications. New to this Second Edition are substantially revised and reorganized coverage of topics treated in the first edition. New material in the book includes two important areas of active research: reactive porous-media flows and electrochemical kinetics. These topics create bridges between traditional fluid-flow simulation approaches and transport within porous-media electrochemical systems. The first half of the book is devoted to multicomponent fluid-mechanical fundamentals. In the second half the authors provide the necessary fundamental background needed to couple reaction chemistry into complex reacting-flow models. Coverage of such topics is presented in self-contained chapters, allowing a great deal of flexibility in course curriculum design. • Features new chapters on reactive porous-media flow, electrochemistry, chemical thermodynamics, transport properties, and solving differential equations in MATLAB • Provides the theoretical underpinnings and practical applications of chemically reacting flow • Emphasizes fundamentals, allowing the analyst to understand fundamental theory underlying reacting-flow simulations • Helps readers to acquire greater facility in the derivation and solution of conservation equations in new or unusual circumstances • Reorganized to facilitate use as a class text and now including a solutions manual for academic adopters Computer simulation of reactive systems is highly efficient and cost-effective in the development, enhancement, and optimization of chemical processes. Chemically Reacting Flow: Theory, Modeling, and Simulation, Second Edition helps prepare graduate students in mechanical or chemical engineering, as well as research professionals in those fields take utmost advantage of that powerful capability.
Learn to apply modeling and parameter estimation tools and strategies to chemicalprocesses using your personal computer This book introduces readers to powerful parameter estimation and computational methods for modeling complex chemical reactions and reaction processes. It presents useful mathematical models, numerical methods for solving them, and statistical methods for testing and discriminating candidate models with experimental data. Topics covered include: Chemical reaction models Chemical reactor models Probability and statistics Bayesian estimation Process modeling with single-response data Process modeling with multi-response data Computer software (Athena Visual Studio) is available via a related Web site http://www.athenavisual.com enabling readers to carry out parameter estimation based on their data and to carry out process modeling using these parameters. As an aid to the reader, an appendix of example problems and solutions is provided. Computer-Aided Modeling of Reactive Systems is an ideal supplemental text for advanced undergraduates and graduate students in chemical engineering courses, while it also serves as a valuable resource for practitioners in industry who want to keep up to date on the most current tools and strategies available.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.