Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets integrates state-of-the-art information and discusses future developments and their significance to the improvement of the renewable energy industry. Renewable energy assets are complex systems with several critical components that require inspection and adequate maintenance in order to ensure their high availability and uninterrupted operation. This is the first book to apply NDT and condition monitoring to these complex systems. - Covers inspection and condition monitoring for a broad range of renewable energy systems, including wind turbines, wave energy devices, CSP and photovoltaic plants, and biofuel/biomass power plants - Includes a review of common types of NDT techniques - Discusses future developments in NDT and condition monitoring for renewable energy systems
Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets integrates state-of-the-art information and discusses future developments and their significance to the improvement of the renewable energy industry. Renewable energy assets are complex systems with several critical components that require inspection and adequate maintenance in order to ensure their high availability and uninterrupted operation. This is the first book to apply NDT and condition monitoring to these complex systems. - Covers inspection and condition monitoring for a broad range of renewable energy systems, including wind turbines, wave energy devices, CSP and photovoltaic plants, and biofuel/biomass power plants - Includes a review of common types of NDT techniques - Discusses future developments in NDT and condition monitoring for renewable energy systems
The new technology and system communication advances are being employed in any system, being more complex. The system dependability considers the technical complexity, size, and interdependency of the system. The stochastic characteristic together with the complexity of the systems as dependability requires to be under control the Reliability, Availability, Maintainability, and Safety (RAMS). The dependability contemplates, therefore, the faults/failures, downtimes, stoppages, worker errors, etc. Dependability also refers to emergent properties, i.e., properties generated indirectly from other systems by the system analyzed. Dependability, understood as general description of system performance, requires advanced analytics that are considered in this book. Dependability management and engineering are covered with case studies and best practices. The diversity of the issues will be covered from algorithms, mathematical models, and software engineering, by design methodologies and technical or practical solutions. This book intends to provide the reader with a comprehensive overview of the current state of the art, case studies, hardware and software solutions, analytics, and data science in dependability engineering.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.