This book presents a comprehensive mathematical study of the operators behind the Born–Jordan quantization scheme. The Schrödinger and Heisenberg pictures of quantum mechanics are equivalent only if the Born–Jordan scheme is used. Thus, Born–Jordan quantization provides the only physically consistent quantization scheme, as opposed to the Weyl quantization commonly used by physicists. In this book we develop Born–Jordan quantization from an operator-theoretical point of view, and analyze in depth the conceptual differences between the two schemes. We discuss various physically motivated approaches, in particular the Feynman-integral point of view. One important and intriguing feature of Born-Jordan quantization is that it is not one-to-one: there are infinitely many classical observables whose quantization is zero.
This book provides an in-depth and rigorous study of the Wigner transform and its variants. They are presented first within a context of a general mathematical framework, and then through applications to quantum mechanics. The Wigner transform was introduced by Eugene Wigner in 1932 as a probability quasi-distribution which allows expression of quantum mechanical expectation values in the same form as the averages of classical statistical mechanics. It is also used in signal processing as a transform in time-frequency analysis, closely related to the windowed Gabor transform.Written for advanced-level students and professors in mathematics and mathematical physics, it is designed as a complete textbook course providing analysis on the most important research on the subject to date. Due to the advanced nature of the content, it is also suitable for research mathematicians, engineers and chemists active in the field.
The emergence of quantum mechanics from classical world mechanics is now a well-established theme in mathematical physics. This book demonstrates that quantum mechanics can indeed be viewed as a refinement of Hamiltonian mechanics, and builds on the work of George Mackey in relation to their mathematical foundations. Additionally when looking at the differences with classical mechanics, quantum mechanics crucially depends on the value of Planck's constant h. Recent cosmological observations tend to indicate that not only the fine structure constant α but also h might have varied in both time and space since the Big Bang. We explore the mathematical and physical consequences of a variation of h; surprisingly we see that a decrease of h leads to transitions from the quantum to the classical.Emergence of the Quantum from the Classical provides help to undergraduate and graduate students of mathematics, physics and quantum theory looking to advance into research in the field.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
This book presents a comprehensive mathematical study of the operators behind the Born–Jordan quantization scheme. The Schrödinger and Heisenberg pictures of quantum mechanics are equivalent only if the Born–Jordan scheme is used. Thus, Born–Jordan quantization provides the only physically consistent quantization scheme, as opposed to the Weyl quantization commonly used by physicists. In this book we develop Born–Jordan quantization from an operator-theoretical point of view, and analyze in depth the conceptual differences between the two schemes. We discuss various physically motivated approaches, in particular the Feynman-integral point of view. One important and intriguing feature of Born-Jordan quantization is that it is not one-to-one: there are infinitely many classical observables whose quantization is zero.
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
The emergence of quantum mechanics from classical world mechanics is now a well-established theme in mathematical physics. This book demonstrates that quantum mechanics can indeed be viewed as a refinement of Hamiltonian mechanics, and builds on the work of George Mackey in relation to their mathematical foundations. Additionally when looking at the differences with classical mechanics, quantum mechanics crucially depends on the value of Planck's constant h. Recent cosmological observations tend to indicate that not only the fine structure constant α but also h might have varied in both time and space since the Big Bang. We explore the mathematical and physical consequences of a variation of h; surprisingly we see that a decrease of h leads to transitions from the quantum to the classical.Emergence of the Quantum from the Classical provides help to undergraduate and graduate students of mathematics, physics and quantum theory looking to advance into research in the field.
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental physe space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigrous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect"--
This book provides an in-depth and rigorous study of the Wigner transform and its variants. They are presented first within a context of a general mathematical framework, and then through applications to quantum mechanics. The Wigner transform was introduced by Eugene Wigner in 1932 as a probability quasi-distribution which allows expression of quantum mechanical expectation values in the same form as the averages of classical statistical mechanics. It is also used in signal processing as a transform in time-frequency analysis, closely related to the windowed Gabor transform. Written for advanced-level students and professors in mathematics and mathematical physics, it is designed as a complete textbook course providing analysis on the most important research on the subject to date. Due to the advanced nature of the content, it is also suitable for research mathematicians, engineers and chemists active in the field.
The Maslov Classes have been playing an essential role in various parts of applied and pure mathematics, and physics, since the early 70's. Their correct definition is due to V. I. Arnold and J. Leray, in the transversal case, and to P. Dazord and the author in the general case. The aim of this book is to give a thorough treatment of the theory of the Maslov classes and of their relationship with the metaplectic group. It is (among other things) shown that these classes can be reconstructed, modulo 4, using only the analytic properties of the metaplectic group. In the last chapter the author sketches a scheme for geometric quantization by introducing two new concepts, that of metaplectic half-form and that of Lagrangian catalogue, the latter generalizes and simplifies the notion of "Lagrangian function" introduced by J. Leray. A Lagrangian catalogue is a collection of metaplectic half-forms which are themselves "cohomological wave functions", whose definition is made possible by using the combinatorial properties of the Maslov classes. The transformation of Lagrangian catalogues under the metaplectic group and of Hamiltonian flows is studied, and it is shown that one thus recovers very easily the so-called "quasi-classical approximation" to the solutions of Schr?dinger equation if one introduces a natural concept, that of projection of a Lagrangian catalogue. An application to geometric phase shifts, including Berry's phase, is given.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.