This research monograph discusses the close correlation between the magnetic and structural properties of thin films in the context of numerous examples of epitaxial metal films, while emphasis is laid on the stabilization of novel structures compared to the bulk material. Further options, possibilities, and limits for applications are given. Techniques for the characterization of thin films are addressed as well.
This is an overview of recording principles, materials aspects, and applications of rewritable optical storage. Elements of data recording, including mark formation, eraseability, direct overwrite strategies, data quality and data stability are explained and extensively discussed. Throughout the book, a mark formation model is described and used to back-up measurement results and support the discussed applications. High-speed and dual-layer recording are analyzed in depth, with proposals to achieve higher performance.
Phase Change Materials: Science and Applications" provides a unique introduction of this rapidly developing field. Clearly written and well-structured, this volume describes the material science of these fascinating materials from a theoretical and experimental perspective. Readers will find an in-depth description of their existing and potential applications in optical and solid state storage devices as well as reconfigurable logic applications. Researchers, graduate students and scientists with an interest in this field will find "Phase Change Materials" to be a valuable reference.
This research monograph discusses the close correlation between the magnetic and structural properties of thin films in the context of numerous examples of epitaxial metal films, while emphasis is laid on the stabilization of novel structures compared to the bulk material. Further options, possibilities, and limits for applications are given. Techniques for the characterization of thin films are addressed as well.
This is an overview of recording principles, materials aspects, and applications of rewritable optical storage. Elements of data recording, including mark formation, eraseability, direct overwrite strategies, data quality and data stability are explained and extensively discussed. Throughout the book, a mark formation model is described and used to back-up measurement results and support the discussed applications. High-speed and dual-layer recording are analyzed in depth, with proposals to achieve higher performance.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.