This paper is concerned with the computational estimation of the error of numerical solutions of potentially degenerate reaction-diffusion equations. The underlying motivation is a desire to compute accurate estimates as opposed to deriving inaccurate analytic upper bounds. In this paper, we outline, analyze, and test an approach to obtain computational error estimates based on the introduction of the residual error of the numerical solution and in which the effects of the accumulation of errors are estimated computationally. We begin by deriving an a posteriori relationship between the error of a numerical solution and its residual error using a variational argument. This leads to the introduction of stability factors, which measure the sensitivity of solutions to various kinds of perturbations. Next, we perform some general analysis on the residual errors and stability factors to determine when they are defined and to bound their size. Then we describe the practical use of the theory to estimate the errors of numerical solutions computationally. Several key issues arise in the implementation that remain unresolved and we present partial results and numerical experiments about these points. We use this approach to estimate the error of numerical solutions of nine standard reaction-diffusion models and make a systematic comparison of the time scale over which accurate numerical solutions can be computed for these problems. We also perform a numerical test of the accuracy and reliability of the computational error estimate using the bistable equation. Finally, we apply the general theory to the class of problems that admit invariant regions for the solutions, which includes seven of the main examples. Under this additional stability assumption, we obtain a convergence result in the form of an upper bound on the error from the a posteriori error estimate. We conclude by discussing the preservation of invariant regions under discretization.
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.