Advanced Laser Diode Reliability focuses on causes and effects of degradations of state-of-the-art semiconductor laser diodes. It aims to provide a tool for linking practical measurements to physical diagnostics. To this purpose, it reviews the current technologies, addressing their peculiar details that can promote specific failure mechanisms. Two sections will support this kernel: a) Failure Analysis techniques, procedures and examples; b) Device-oriented laser modelling and parameter extraction. - Talk about Natural continuity with the most widespread existing textbooks, published by Mitsuo Fukuda - Present the extension to new failure mechanisms, new technologies, new application fields, new environments - Introduce a specific self-consistent model for the physical description of a laser diode, expressed in terms of practically measurable quantities
This textbook describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physical concepts, while keeping the internal coherence of the analysis and explaining the different levels of approximation. Coverage includes the main steps used in the fabrication process of integrated circuits: diffusion, thermal oxidation, epitaxy, and ion implantation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS, CMOS), including a number of solid-state sensors. The final chapters are devoted to the measuring methods for semiconductor-device parameters, and to a brief illustration of the scaling rules and numerical methods applied to the design of semiconductor devices.
Advanced Laser Diode Reliability focuses on causes and effects of degradations of state-of-the-art semiconductor laser diodes. It aims to provide a tool for linking practical measurements to physical diagnostics. To this purpose, it reviews the current technologies, addressing their peculiar details that can promote specific failure mechanisms. Two sections will support this kernel: a) Failure Analysis techniques, procedures and examples; b) Device-oriented laser modelling and parameter extraction. - Talk about Natural continuity with the most widespread existing textbooks, published by Mitsuo Fukuda - Present the extension to new failure mechanisms, new technologies, new application fields, new environments - Introduce a specific self-consistent model for the physical description of a laser diode, expressed in terms of practically measurable quantities
Matthew is a man in gray, naive and gentle. He is neither a hero nor a revolutionary, his rebellion is death. The world of information, due to a blackout, will implode.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.