This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristics due to rotor internal damping and instabilities due to asymmetric shaft stiffness and thermal unbalance behavior.
The book focuses on two concurrent experimental therapies in cancer treatment known as boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT) using a variety of boron- and gadolinium-based compounds. Some of the gadolinium compounds serve the dual purpose as being MRI contrast agents and GdNCT agents. The book describes why BNCT & GdNCT were not at the forefront of the clinical trials during the past seven to eight decades since the discovery of neutrons by John Chadwick in 1932 and how the latest development in the synthesis of target boron- and gadolinium-based drugs has turned the area into the hottest one worthy of further investigation with the new clinical trials in the USA and elsewhere.
Leading neuroscientist Dr. Masao Ito advances a detailed and fascinating view of what the cerebellum contributes to brain function. The cerebellum has been seen as primarily involved in coordination of body movement control, facilitating the learning of motor skills such as those involved in walking, riding a bicycle, or playing a piano. The cerebellum is now viewed as an assembly of numerous neuronal machine modules, each of which provides an implicit learning capability to various types of motor control. The cerebellum enables us to unconsciously learn motor skills through practice by forming internal models simulating control system properties of the body parts. Based on these remarkable advances in our understanding of motor control mechanisms of the cerebellum, Ito presents a still larger view of the cerebellum as serving a higher level of brain functions beyond movements, including the implicit part of the thought and cognitive processes that manipulate knowledge. Ito extends his investigation of the cerebellum to discuss neural processes that may be involved implicitly in such complex mental actions as having an intuition, imagination, hallucination, or delusion.
This book is about the roles that financial institutions are expected to play for revitalizing regional economies in Japan, which face several serious problems such as a rapidly aging population as well as a sharp decline in population. The Japanese government expects regional financial institutions to contribute to that revitalization. Actually, Japanese regional financial institutions have made various efforts to support small and medium-sized enterprises (SMEs) to increase their profitability and sustainability. However, the efforts have not yet produced adequate outcomes. To help clarify the reasons for the failures and to offer policy recommendations, the authors used four questionnaires to conduct surveys. They sent the questionnaires to the headquarters of regional financial institutions for Chapter 1 and to the staffs of regional financial institutions for Chapter 2. The government revised the Credit Guarantee System Reform Act in 2017 to promote financial institutions and credit guarantee corporations in order to proactively support SMEs, so in Chapter 3 the aims of the revised act are explained. Chapter 4 is based on a survey of startups that used the public credit guarantee. Finally, Chapter 5 is based on another, different questionnaire that was sent to SMEs to find out why they failed to improve their risk management and how financial institutions can help them to prepare for disasters. To the best of the authors’ knowledge, these questionnaire studies on regional revitalization have not been carried out elsewhere, making this book unique.
Physically correct boundary conditions on vapor-liquid interfaces are essential in order to make an analysis of flows of a liquid including bubbles or of a gas including droplets. Suitable boundary conditions do not exist at the present time. This book is concerned with the kinetic boundary condition for both the plane and curved vapor-liquid interfaces, and the fluid dynamics boundary condition for Navier-Stokes(fluid dynamics) equations. The kinetic boundary condition is formulated on the basis of molecular dynamics simulations and the fluid dynamics boundary condition is derived by a perturbation analysis of Gaussian-BGK Boltzmann equation applicable to polyatomic gases. The fluid dynamics boundary condition is applied to actual flow problems of bubbles in a liquid and droplets in a gas.
Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics, cell mechanics, and model-, rule-, and image-based methods in computational biomechanics analysis and simulation. The book is an excellent resource for graduate school-level engineering students and young researchers in bioengineering and biomedicine.
Molecular Biology of DNA Topoisomerases and Its Application to Chemotherapy is based on conference proceedings from the International Symposium on DNA Topoisomerases in Chemotherapy, held in Nagoya, Japan, in November 1991. The book opens with a discussion of the structural and functional properties of various types of DNA topoisomerases identified in prokaryotes and eukaryotes, in addition to their roles as cellular targets of anticancer and antimicrobial agents. Other topics addressed include the genetics and biology of DNA topoisomerases, inhibitors of microbial DNA topoisomerases and drug resistance, inhibitors of mammalian DNA topoisomerases and drug resistance, and preclinical and clinical studies of DNA topoisomerase inhibitors. Molecular Biology of DNA Topoisomerases and Its Application to Chemotherapy will broaden the understanding of biology and genetics of DNA topoisomerases and contribute to the development of antimicrobial and anticancer agents-inhibitors of topoisomerases. It will be invaluable for oncologists, molecular biologists, cellular biologists, geneticists, biochemists, and pharmaceutical researchers.
In this provocative study, Miyoshi deliberately adopts an off-center perspective--one that restores the historical asymmetry of encounters between Japan and the United States, from Commodore Perry to Douglas MacArthur--to investigate the blindness that has characterized relations between the two cultures.
The Jadou Association’s hired thugs have been sent running back to Western Japan, and the Oudou’s hierarchy has managed to avoid complete collapse, thanks to the determined efforts of Hina and Yoshifumi Nitta—aka “The Monster of the Modern Era.” But things won’t stay quiet for long. The next phase of the Jadou’s takeover plot is already in motion. To spearhead the offensive, they’ve sent one of their top lieutenants deep into Oudou territory. His name? Masaki Tsuda. And at his side stands a mysterious young boy. Steel yourself for another wave of earth-shattering yakuza combat in volume 13 of Hinamatsuri!
Provides an up-to-date summary of new scintillating materials for ionization radiation detectors and recent progress in growth methods for single crystals Scintillators, a type of material that can emit light after absorbing high-energy particles or rays, play a central role in the field of radiation detection. Scintillators are the core components of nuclear medicine imaging equipment, baggage and container security inspection, non-destructive testing of large industrial equipment, environmental monitoring, and many other applications. Inorganic Scintillator and Crystal Growth Methods updates readers with the latest developments in the rapidly-advancing area. Opening with a brief introduction, the book covers a range of novel scintillator single crystals; gamma-ray scintillators with garnet-type oxide crystals, pyrochlore-type oxide crystals, halide crystals, neutron scintillators with fluoride crystals, halide crystals, vacuum ultraviolet (VUV) scintillators, and fluoride scintillators. Concise chapters also address self-organized scintillators with eutectic morphology and nanoparticle scintillator crystals. Provides a timely and reliable overview of the achievements, trends, and advances in the field Highlights new work on single crystals of piezoelectric and scintillator materials, as well as various growth methods of different functional single crystals Presented in a succinct format that allows readers to quickly ingest key information Includes real-world perspectives on a variety of industrial applications Written by an international team of experts in non-organic material science Inorganic Scintillator and Crystal Growth Methods is a valuable resource for both academics and industry professionals, especially materials scientists, inorganic chemists, and radiation physicists.
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristics due to rotor internal damping and instabilities due to asymmetric shaft stiffness and thermal unbalance behavior.
Building on the previous volume “Vibrations of Rotating Machinery - Volume 1. Basic Rotordynamics: Introduction to Practical Vibration Analysis,” this book is intended for all practical designers and maintenance experts who are responsible for the reliable manufacturing and operation of rotating machinery. It opens with the dynamics of oil film bearings and their influences on unbalance, vibration resonance and the stability of rotor whirl motion. Subsequently, the book introduces readers to vibration diagnosis techniques for traditional ball bearings and active vibration control from magnetic bearings. Case studies on vibration problems and troubleshooting in industrial turbo machines are then presented and explained, showing rotor designers how to eliminate instability and modify resonance characteristics. Torsional vibration and other coupled vibration phenomena are discussed, and vibration measurement techniques and related signal processing procedures for vibration diagnosis are provided. Our latest three topics are included, covering: (a) the importance of the modeling order reduction (MOR) technique; (b) the approximate evaluation for oil-wheel/whip instability; and (c) a systematic method for shafting-blading coupled vibration analyses. In closing, a 100-question trial test is supplied as an example of the certification of vibration experts based on the ISO standard.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.