The theory of simple algebraic groups is important in many areas of mathematics. The authors of this book investigate the subgroups of certain types of simple algebraic groups and obtain a complete description of all those subgroups which are themselves simple. This description is particularly useful in understanding centralizers of subgroups and restrictions of representations.
The main result describes completely the maximal factorizations of all the finite simple groups and their automorphism groups. As a consequence, a classification of the maximal subgroups of the finite alternating and symmetric groups is obtained.
With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.
Intends to complete the determination of the maximal subgroups of positive dimension in simple algebraic groups of exceptional type over algebraically closed fields. This title follows work of Dynkin, who solved the problem in characteristic zero, and Seitz who did likewise over fields whose characteristic is not too small.
This book gives a proof of Cherlin’s conjecture for finite binary primitive permutation groups. Motivated by the part of model theory concerned with Lachlan’s theory of finite homogeneous relational structures, this conjecture proposes a classification of those finite primitive permutation groups that have relational complexity equal to 2. The first part gives a full introduction to Cherlin’s conjecture, including all the key ideas that have been used in the literature to prove some of its special cases. The second part completes the proof by dealing with primitive permutation groups that are almost simple with socle a group of Lie type. A great deal of material concerning properties of primitive permutation groups and almost simple groups is included, and new ideas are introduced. Addressing a hot topic which cuts across the disciplines of group theory, model theory and logic, this book will be of interest to a wide range of readers. It will be particularly useful for graduate students and researchers who need to work with simple groups of Lie type.
Introducing the representation theory of finite groups, this second edition has been revised and updated. The theory is developed in terms of modules with considerable emphasis placed upon constructing characters.
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.
This memoir develops the spectral theory of the Lax operators of nonlinear Schrödinger-like partial differential equations with periodic boundary conditions. Their special curves, i.e., the common spectrum with the periodic shifts, are generically Riemann surfaces of infinite genus. The points corresponding to infinite energy are added. The resulting spaces are no longer Riemann surfaces in the usual sense, but they are quite similar to compact Riemann surfaces.
The authors prove that if $F$ is a finitely generated free group and $\phi$ is an automorphism of $F$ then $F\rtimes_\phi\mathbb Z$ satisfies a quadratic isoperimetric inequality. The authors' proof of this theorem rests on a direct study of the geometry of van Kampen diagrams over the natural presentations of free-by-cylic groups. The main focus of this study is on the dynamics of the time flow of $t$-corridors, where $t$ is the generator of the $\mathbb Z$ factor in $F\rtimes_\phi\mathbb Z$ and a $t$-corridor is a chain of 2-cells extending across a van Kampen diagram with adjacent 2-cells abutting along an edge labelled $t$. The authors prove that the length of $t$-corridors in any least-area diagram is bounded by a constant times the perimeter of the diagram, where the constant depends only on $\phi$. The authors' proof that such a constant exists involves a detailed analysis of the ways in which the length of a word $w\in F$ can grow and shrink as one replaces $w$ by a sequence of words $w_m$, where $w_m$ is obtained from $\phi(w_{m-1})$ by various cancellation processes. In order to make this analysis feasible, the authors develop a refinement of the improved relative train track technology due to Bestvina, Feighn and Handel.
Computes the 2-primary $v_1$-periodic homotopy groups of the special orthogonal groups $SO(n)$; the method is to calculate the Bendersky-Thompson spectral sequence, a $K_*$-based unstable homotopy spectral sequence, of $\operatorname{Spin}(n)$.
The author develops a non-abelian version of $p$-adic Hodge Theory for varieties (possibly open with ``nice compactification'') with good reduction. This theory yields in particular a comparison between smooth $p$-adic sheaves and $F$-isocrystals on the level of certain Tannakian categories, $p$-adic Hodge theory for relative Malcev completions of fundamental groups and their Lie algebras, and gives information about the action of Galois on fundamental groups.
Introducing the representation theory of finite groups, this second edition has been revised and updated. The theory is developed in terms of modules with considerable emphasis placed upon constructing characters.
With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.
Over the past 20 years, the theory of groups — in particular simple groups, finite and algebraic — has influenced a number of diverse areas of mathematics. Such areas include topics where groups have been traditionally applied, such as algebraic combinatorics, finite geometries, Galois theory and permutation groups, as well as several more recent developments. Among the latter are probabilistic and computational group theory, the theory of algebraic groups over number fields, and model theory, in each of which there has been a major recent impetus provided by simple group theory. In addition, there is still great interest in local analysis in finite groups, with substantial new input from methods of geometry and amalgams, and particular emphasis on the revision project for the classification of finite simple groups.This important book contains 20 survey articles covering many of the above developments. It should prove invaluable for those working in the theory of groups and its applications.
This book gives a proof of Cherlin’s conjecture for finite binary primitive permutation groups. Motivated by the part of model theory concerned with Lachlan’s theory of finite homogeneous relational structures, this conjecture proposes a classification of those finite primitive permutation groups that have relational complexity equal to 2. The first part gives a full introduction to Cherlin’s conjecture, including all the key ideas that have been used in the literature to prove some of its special cases. The second part completes the proof by dealing with primitive permutation groups that are almost simple with socle a group of Lie type. A great deal of material concerning properties of primitive permutation groups and almost simple groups is included, and new ideas are introduced. Addressing a hot topic which cuts across the disciplines of group theory, model theory and logic, this book will be of interest to a wide range of readers. It will be particularly useful for graduate students and researchers who need to work with simple groups of Lie type.
The theory of simple algebraic groups is important in many areas of mathematics. The authors of this book investigate the subgroups of certain types of simple algebraic groups and obtain a complete description of all those subgroups which are themselves simple. This description is particularly useful in understanding centralizers of subgroups and restrictions of representations.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.