Time and matter are the most fundamental concepts in physics and in any science-based description of the world around us. Quantum theory has, however, revealed many novel insights into these concepts in non-relativistic, relativistic and cosmological contexts. The implications of these novel perspectives have been realized and, in particular, probed experimentally only recently. In the papers in this proceedings, these issues are discussed in a truly interdisciplinary fashion from philosophical and historical perspectives. The leading contributors, including Nobel laureates T W Hnnsch and G t'' Hooft, address both experimental and theoretical issues. Sample Chapter(s). Chapter 1: The Measurement to Time with Atomic Clocks (742 KB). Contents: Measuring Time; Causality and Signal Propagation; Coherence and Decoherence; CP and T Violation; Macroscopic Time Reversal and the Arrow of Time; New Paradigms. Readership: Physicists, philosophers and historians of science, graduate students of physics.
The Second Edition of The Extracellular Matrix FactsBook has been completely revised, updated and expanded by over 50 percent. It contains over 85 entries on the diverse group of macromolecules that assemble toform the extracellular matrix. Entries provide information on molecular structure, isolation, primary structure, structural and functional sites, gene structure, database accession numbers, and key references.Key Features* Compiled by members of one of the foremost centers of matrix biochemistry in the world* Contains over 30 new entries, with all previous entries being revised and updated* Includes new entries on proteinases involved in the deposition of the extracellular matrix* Presents 3D ribbon diagrams in cases where the protein structure is now known
Martin Harwit, author of the influential book Cosmic Discovery, asks key questions about the scope of observational astronomy. Humans have long sought to understand the world we inhabit. Recent realization of how our unruly Universe distorts information before it ever reaches us reveals distinct limits on how well we will ultimately understand the Cosmos. Even the best instruments we might conceive will inevitably be thwarted by ever more complex distortions and will never untangle the data completely. Observational astronomy, and the cost of pursuing it, will then have reached an inherent end. Only some totally different lines of approach, as yet unknown and potentially far more costly, might then need to emerge if we wish to learn more. This accessible book is written for all astronomers, astrophysicists, and those curious about how well we will ever understand the Universe and the potential costs of pushing those limits.
This monograph represents a critical survey of the outstanding capabilities of X-ray diffuse scattering for the structural characterization of mesoscopic material systems. The mesoscopic regime comprises length scales ranging from a few up to some hundreds of nanometers. It is of particular relevance at semiconductor layer systems where, for example, interface roughness or low-dimensional objects such as quantum dots and quantum wires have attracted much interest. An extensive overview of the present state-of-the-art theory of X-ray diffuse scattering at mesoscopic structures is given followed by a valuable description of various experimental techniques. Selected up-to-date examples are discussed. The aim of the present book is to combine aspects of self-organized growth of mesoscopic structures with corresponding X-ray diffuse scattering experiments.
Radioactive Tracers in Biology: An Introduction to Trace Methodology, Second Edition focuses on the biochemical and physiological aspects of tracer research, including medical applications of tracer techniques, radioactivity, radiation hazards, and radioactive isotopes. The book first offers information on atomic nuclei, radioactivity, and the production of radioactive isotopes and radiation characteristics of tracer atoms. Discussions focus on nuclear reactions, neutron-induced and deuteron-induced transmutations, properties of atomic nuclei, and target techniques and radiochemistry. The manuscript also ponders on the procedures for radioactive assay and radiation hazards. The text examines the biochemical, medical, and physiological applications of tracer methodology. The manuscript also takes a look at radioactive hydrogen, short-lived and long-lived radioactive carbon, radioactive phosphorus and sulfur, and alkali metal and alkaline earth tracers. Topics include synthesis of organic intermediates for tracer carbon studies; biosynthesis of labeled carbon compounds; and general survey of alkali metal tracers. The publication is a dependable reference for readers interested in radioactive tracers.
A self-contained introduction to the basic theoretical concepts, experimental techniques and recent advances in the fields of quantum communication, quantum information and quantum computation. The introductory and self-contained character of the contributions should make this book particularly attractive to students and active researchers in physics and computer science who want to become acquainted with the underlying basic ideas and recent advances in the rapidly evolving field of quantum information processing.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.