This book constitutes the refereed proceedings of the 6th International Conference on Computer Vision Systems, ICVS 2008, held in Santorini, Greece, May 12-15, 2008. The 23 revised papers presented together with 30 poster presentations and 2 invited papers were carefully reviewed and selected from 128 submissions. The papers are organized in topical sections on cognitive vision, monitor and surveillance, computer vision architectures, calibration and registration object recognition and tracking, learning, human machine interaction as well as cross modal systems.
Robot vision refers to the capability of a robot to visually perceive the environment and use this information for execution of various tasks. Visual feedback has been used extensively for robot navigation and obstacle avoidance. In the recent years, there are also examples that include interaction with people and manipulation of objects. In this paper, we review some of the work that goes beyond of using artificial landmarks and fiducial markers for the purpose of implementing visionbased control in robots. We discuss different application areas, both from the systems perspective and individual problems such as object tracking and recognition.
Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot's view in order to explore interaction possibilities of the scene.
Robot vision refers to the capability of a robot to visually perceive the environment and use this information for execution of various tasks. Visual feedback has been used extensively for robot navigation and obstacle avoidance. In the recent years, there are also examples that include interaction with people and manipulation of objects. In this paper, we review some of the work that goes beyond of using artificial landmarks and fiducial markers for the purpose of implementing visionbased control in robots. We discuss different application areas, both from the systems perspective and individual problems such as object tracking and recognition.
In the past few years, with the advances in microelectronics and digital te- nology, cameras became a widespread media. This, along with the enduring increase in computing power boosted the development of computer vision s- tems. The International Conference on Computer Vision Systems (ICVS) covers the advances in this area. This is to say that ICVS is not and should not be yet another computer vision conference. The ?eld of computer vision is fully covered by many well-established and famous conferences and ICVS di?ers from these by covering the systems point of view. ICVS 2008 was the 6th International Conference dedicated to advanced research on computer vision systems. The conference, continuing a series of successful events in Las Palmas, Vancouver, Graz, New York and Bielefeld, in 2008 was held on Santorini. In all, 128 papers entered the review process and each was reviewed by three independent reviewers using the double-blind review method. Of these, 53 - pers were accepted (23 as oral and 30 as poster presentation). There were also two invited talks by P. Anandan and by Heinrich H. Bultho ̈ ?. The presented papers cover all aspects of computer vision systems, namely: cognitive vision, monitor and surveillance, computer vision architectures, calibration and reg- tration, object recognition and tracking, learning, human—machine interaction and cross-modal systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.