The area of molecular imaging has matured over the past decade and is still growing rapidly. Many concepts developed for molecular biology and cellular imaging have been successfully translated to in vivo imaging of intact organisms. Molecular imaging enables the study of processes at a molecular level in their full biological context. Due to the high specificity of the molecular readouts the approach bears a high potential for diagnostics. It is fair to say that molecular imaging has become an indispensable tool for biomedical research and drug discovery and development today.This volume familiarizes the reader with the concepts of imaging and molecular imaging in particular. Basic principles of imaging technologies, reporter moieties for the various imaging modalities, and the design of targeted probes are described in the first part. The second part illustrates how these tools can be used to visualize relevant molecular events in the living organism. Topics covered include the studies of the biodistribution of reporter probes and drugs, visualization of the expression of biomolecules such as receptors and enzymes, and how imaging can be used for analyzing consequences of the interaction of a ligand or a drug with its molecular target by visualizing signal transduction, or assessing the metabolic, physiological, or structural response of the organism studied.The third edition has been extended considerably. This holds for the chapter on imaging modalities, which now includes sections on intravital microscopy and mass spectrometric imaging. All chapters have been updated and a new chapter on the challenges of translating molecular imaging solutions for clinical use has been added.
The area of molecular imaging has matured over the past decade and is still growing rapidly. Many concepts developed for molecular biology and cellular imaging have been successfully translated to in vivo imaging of intact organisms. Molecular imaging enables the study of processes at a molecular level in their full biological context. Due to the high specificity of the molecular readouts the approach bears a high potential for diagnostics. It is fair to say that molecular imaging has become an indispensable tool for biomedical research and drug discovery and development today.This volume familiarizes the reader with the concepts of imaging and molecular imaging in particular. Basic principles of imaging technologies, reporter moieties for the various imaging modalities, and the design of targeted probes are described in the first part. The second part illustrates how these tools can be used to visualize relevant molecular events in the living organism. Topics covered include the studies of the biodistribution of reporter probes and drugs, visualization of the expression of biomolecules such as receptors and enzymes, and how imaging can be used for analyzing consequences of the interaction of a ligand or a drug with its molecular target by visualizing signal transduction, or assessing the metabolic, physiological, or structural response of the organism studied. The final chapter deals with visualization of cell migration, for example in the context of cell therapies.The second edition covers novel developments over recent years, in particular regarding imaging technologies (hybrid techniques) and novel reporter concepts. Novel biomedical applications have been included, where appropriate. All the chapters have been thoroughly reworked and the artwork updated.
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory
This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Many numerical examples accompany the theory throughout the text. It is geared towards graduate students and researchers in applied mathematics. Researchers in the area of imaging science will also find this book appealing. It can serve as a main text in courses in image processing or as a supplemental text for courses on regularization and inverse problems at the graduate level.
This book contains a systematic and partly axiomatic treatment of the holomorphic functional calculus for unbounded sectorial operators. The account is generic so that it can be used to construct and interrelate holomorphic functional calculi for other types of unbounded operators. Particularly, an elegant unified approach to holomorphic semigroups is obtained. The last chapter describes applications to PDE, evolution equations and approximation theory as well as the connection with harmonic analysis.
The book provides a self-contained introduction to the mathematical theory of non-smooth dynamical problems, as they frequently arise from mechanical systems with friction and/or impacts. It is aimed at applied mathematicians, engineers, and applied scientists in general who wish to learn the subject.
Since Greek antiquity, the ‘barbarian’ captivates the Western imaginary and operates as the antipode against which self-proclaimed civilized groups define themselves. Therefore, the study of the cultural history of barbarism is a simultaneous exploration of the shifting contours of European identity. This two-volume co-authored study explores the history of the concept ‘barbarism’ from the 18th century to the present and illuminates its foundational role in modern European and Western identity. It constitutes an original comparative, interdisciplinary exploration of the concept’s modern European and Western history, with emphasis on the role of literature in the concept’s shifting functions. Critically responding to the contemporary popularity of the term ‘barbarian' in political rhetoric and the media, and its violent, exclusionary workings, the study contributes to a historically grounded understanding of this figure’s past and contemporary uses. It combines overviews with detailed analyses of representative works of literature, art, film, philosophy, political and cultural theory, in which “barbarism” figures prominently.
The contributions to the collection Systems Theory and Theology explore the interplay between systems theory, religion and theology, and the symbolic expressions and philosophical foundations of these academic disciplines. This endeavor is rooted in the oeuvre of the late Austrian physicist Alfred Locker (1922-2005), who firmly believed that systems theory would finally emerge, some sixty years after von Bertalanffy's seminal work on General System Theory, as a bridge-building metatheory between the sciences and religion. The essays in this volume show, however, that such conversation transcends the usual form of dialogue among these disciplines. The studies contained in this collection enter into a critical evaluation and reassessment of the dominant postulates of scientific and theological systems and their interaction. Systems Theory and Theology includes treatments of paradoxes (A. Locker), the inner sciences (Zwick), systems of meaning (Krieger), philosophy (Murphy), theology (Sedmak), isomorphies of religious symbols (Zwick), and the bridging of science and religion (M. Locker).
This book constitutes the refereed proceedings of the 6th International Conference on Computer Vision Systems, ICVS 2008, held in Santorini, Greece, May 12-15, 2008. The 23 revised papers presented together with 30 poster presentations and 2 invited papers were carefully reviewed and selected from 128 submissions. The papers are organized in topical sections on cognitive vision, monitor and surveillance, computer vision architectures, calibration and registration object recognition and tracking, learning, human machine interaction as well as cross modal systems.
This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn-Banach theorem provide a stepping-stone to more advanced texts. The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.
Wittgenstein et Spinoza construisent, l'un dans le Tractatus, l'autre dans l'Éthique, des systèmes philosophiques réunissant le monde, l'homme et Dieu dans lesquels ils s'opposent sur de nombreux points. C'est ainsi par exemple que, suivant Spinoza, l'homme est assuré que rien ne se produit sans cause alors que Wittgenstein rejette la possibilité de rapports d'ordre causal entre les événements. Le présent travail dissèque dans une première partie l'œuvre de Wittgenstein, il analyse dans une deuxième partie la doctrine de Spinoza, et il compare enfin dans la troisième partie les deux systèmes dont il fait ressortir les points de concordance et de dissemblance dans leurs constructions respectives. Il traite les œuvres philosophiques que sont le Tractatus et l'Éthique comme si elles relevaient de sciences telles que la mécanique, l'astronomie, etc., et utilise des modèles géométriques appropriés à leur interprétation. L'étude comparative du Tractatus et de l'Éthique, qui ne cessent d'exercer leur influence sur la pensée humaine, permet de conclure que le Tractatus, œuvre du XXe siècle, renoue avec le rationalisme du XVIIe siècle exprimé par Spinoza.
Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
The area of molecular imaging has matured over the past decade and is still growing rapidly. Many concepts developed for molecular biology and cellular imaging have been successfully translated to in vivo imaging of intact organisms. Molecular imaging enables the study of processes at a molecular level in their full biological context. Due to the high specificity of the molecular readouts the approach bears a high potential for diagnostics. It is fair to say that molecular imaging has become an indispensable tool for biomedical research and drug discovery and development today.This volume familiarizes the reader with the concepts of imaging and molecular imaging in particular. Basic principles of imaging technologies, reporter moieties for the various imaging modalities, and the design of targeted probes are described in the first part. The second part illustrates how these tools can be used to visualize relevant molecular events in the living organism. Topics covered include the studies of the biodistribution of reporter probes and drugs, visualization of the expression of biomolecules such as receptors and enzymes, and how imaging can be used for analyzing consequences of the interaction of a ligand or a drug with its molecular target by visualizing signal transduction, or assessing the metabolic, physiological, or structural response of the organism studied. The final chapter deals with visualization of cell migration, for example in the context of cell therapies.The second edition covers novel developments over recent years, in particular regarding imaging technologies (hybrid techniques) and novel reporter concepts. Novel biomedical applications have been included, where appropriate. All the chapters have been thoroughly reworked and the artwork updated.
The area of molecular imaging has matured over the past decade and is still growing rapidly. Many concepts developed for molecular biology and cellular imaging have been successfully translated to in vivo imaging of intact organisms. Molecular imaging enables the study of processes at a molecular level in their full biological context. Due to the high specificity of the molecular readouts the approach bears a high potential for diagnostics. It is fair to say that molecular imaging has become an indispensable tool for biomedical research and drug discovery and development today.This volume familiarizes the reader with the concepts of imaging and molecular imaging in particular. Basic principles of imaging technologies, reporter moieties for the various imaging modalities, and the design of targeted probes are described in the first part. The second part illustrates how these tools can be used to visualize relevant molecular events in the living organism. Topics covered include the studies of the biodistribution of reporter probes and drugs, visualization of the expression of biomolecules such as receptors and enzymes, and how imaging can be used for analyzing consequences of the interaction of a ligand or a drug with its molecular target by visualizing signal transduction, or assessing the metabolic, physiological, or structural response of the organism studied.The third edition has been extended considerably. This holds for the chapter on imaging modalities, which now includes sections on intravital microscopy and mass spectrometric imaging. All chapters have been updated and a new chapter on the challenges of translating molecular imaging solutions for clinical use has been added.
The area of molecular imaging has matured over the past decade and is still growing rapidly. Many concepts developed for molecular biology and cellular imaging have been successfully translated to in vivo imaging of intact organisms. Molecular imaging enables the study of processes at a molecular level in their full biological context. Due to the high specificity of the molecular readouts the approach bears a high potential for diagnostics. It is fair to say that molecular imaging has become an indispensable tool for biomedical research and drug discovery and development today. This volume familiarizes the reader with the concepts of imaging and molecular imaging in particular. Basic principles of imaging technologies, reporter moieties for the various imaging modalities, and the design of targeted probes are described in the first part. The second part illustrates how these tools can be used to visualize relevant molecular events in the living organism. Topics covered include the studies of the biodistribution of reporter probes and drugs, visualization of the expression of biomolecules such as receptors and enzymes, and how imaging can be used for analyzing consequences of the interaction of a ligand or a drug with its molecular target by visualizing signal transduction, or assessing the metabolic, physiological or structural response of the organism studied. The final chapter deals with visualization of cell migration, for example in the context of cell therapies. The second edition covers novel developments over recent years, in particular regarding imaging technologies (hybrid techniques) and novel reporter concepts. Novel biomedical applications have been included, where appropriate. All the chapters have been thoroughly reworked and the artwork updated.
The current progress in molecular medicine allows the identification of a plethora of new and often human-specific drug targets. An early in vivo validation of specific ligands binding to these targets in humans is needed to assess their potential for targeted imaging and radiotherapy. Radiopharmaceuticals are uniquely suitable for such target validation studies. The purpose of the Ernst Schering Research Foundation Workshop 48 was to offer a forum for an open exchange on the state of the art in the early development of such radiopharmaceuticals. Experts from academia, industry and regulatory authorities provided contributions covering the identification of targets, the necessary preclinical studies on the safety of ligands as well as their validation in human clinical trials.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.