Is quantum logic really logic?" This book argues for a positive answer to this question once and for all. There are many quantum logics and their structures are delightfully varied. The most radical aspect of quantum reasoning is reflected in unsharp quantum logics, a special heterodox branch of fuzzy thinking. For the first time, the whole story of Quantum Logic is told; from its beginnings to the most recent logical investigations of various types of quantum phenomena, including quantum computation. Reasoning in Quantum Theory is designed for logicians, yet amenable to advanced graduate students and researchers of other disciplines.
This book provides a general survey of the main concepts, questions and results that have been developed in the recent interactions between quantum information, quantum computation and logic. Divided into 10 chapters, the books starts with an introduction of the main concepts of the quantum-theoretic formalism used in quantum information. It then gives a synthetic presentation of the main “mathematical characters” of the quantum computational game: qubits, quregisters, mixtures of quregisters, quantum logical gates. Next, the book investigates the puzzling entanglement-phenomena and logically analyses the Einstein–Podolsky–Rosen paradox and introduces the reader to quantum computational logics, and new forms of quantum logic. The middle chapters investigate the possibility of a quantum computational semantics for a language that can express sentences like “Alice knows that everybody knows that she is pretty”, explore the mathematical concept of quantum Turing machine, and illustrate some characteristic examples that arise in the framework of musical languages. The book concludes with an analysis of recent discussions, and contains a Mathematical Appendix which is a survey of the definitions of all main mathematical concepts used in the book.
This book presents a study on the foundations of a large class of paraconsistent logics from the point of view of the logics of formal inconsistency. It also presents several systems of non-standard logics with paraconsistent features.
This book provides a general survey of the main concepts, questions and results that have been developed in the recent interactions between quantum information, quantum computation and logic. Divided into 10 chapters, the books starts with an introduction of the main concepts of the quantum-theoretic formalism used in quantum information. It then gives a synthetic presentation of the main “mathematical characters” of the quantum computational game: qubits, quregisters, mixtures of quregisters, quantum logical gates. Next, the book investigates the puzzling entanglement-phenomena and logically analyses the Einstein–Podolsky–Rosen paradox and introduces the reader to quantum computational logics, and new forms of quantum logic. The middle chapters investigate the possibility of a quantum computational semantics for a language that can express sentences like “Alice knows that everybody knows that she is pretty”, explore the mathematical concept of quantum Turing machine, and illustrate some characteristic examples that arise in the framework of musical languages. The book concludes with an analysis of recent discussions, and contains a Mathematical Appendix which is a survey of the definitions of all main mathematical concepts used in the book.
Is quantum logic really logic?" This book argues for a positive answer to this question once and for all. There are many quantum logics and their structures are delightfully varied. The most radical aspect of quantum reasoning is reflected in unsharp quantum logics, a special heterodox branch of fuzzy thinking. For the first time, the whole story of Quantum Logic is told; from its beginnings to the most recent logical investigations of various types of quantum phenomena, including quantum computation. Reasoning in Quantum Theory is designed for logicians, yet amenable to advanced graduate students and researchers of other disciplines.
What link might connect two far worlds like quantum theory and music? There is something universal in the mathematical formalism of quantum theory that goes beyond the limits of its traditional physical applications. We are now beginning to understand how some mysterious quantum concepts, like superposition and entanglement, can be used as a semantic resource.
This book gives a state-of-the-art survey of current research in logic and philosophy of science, as viewed by invited speakers selected by the most prestigious international organization in the field. In particular, it gives a coherent picture of foundational research into the various sciences, both natural and social. In addition, it has special interest items such as symposia on interfaces between logic and methodology, semantics and semiotics, as well as updates on the current state of the field in Eastern Europe and the Far East.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.