This book addresses the task of processing online handwritten notes acquired from an electronic whiteboard, which is a new modality in handwriting recognition research. The main motivation of this book is smart meeting rooms, aim to automate standard tasks usually performed by humans in a meeting.The book can be summarized as follows. A new online handwritten database is compiled, and four handwriting recognition systems are developed. Moreover, novel preprocessing and normalization strategies are designed especially for whiteboard notes and a new neural network based recognizer is applied. Commercial recognition systems are included in a multiple classifier system. The experimental results on the test set show a highly significant improvement of the recognition performance to more than 86%.
The business problem of having inefficient processes, imprecise process analyses and simulations as well as non-transparent artificial neuronal network models can be overcome by an easy-to-use modeling concept. With the aim of developing a flexible and efficient approach to modeling, simulating and optimizing processes, this paper proposes a flexible Concept of Neuronal Modeling (CoNM). The modeling concept, which is described by the modeling language designed and its mathematical formulation and is connected to a technical substantiation, is based on a collection of novel sub-artifacts. As these have been implemented as a computational model, the set of CoNM tools carries out novel kinds of Neuronal Process Modeling (NPM), Neuronal Process Simulations (NPS) and Neuronal Process Optimizations (NPO). The efficacy of the designed artifacts was demonstrated rigorously by means of six experiments and a simulator of real industrial production processes.
This book addresses the task of processing online handwritten notes acquired from an electronic whiteboard, which is a new modality in handwriting recognition research. The main motivation of this book is smart meeting rooms, aim to automate standard tasks usually performed by humans in a meeting. The book can be summarized as follows. A new online handwritten database is compiled, and four handwriting recognition systems are developed. Moreover, novel preprocessing and normalization strategies are designed especially for whiteboard notes and a new neural network based recognizer is applied. Commercial recognition systems are included in a multiple classifier system. The experimental results on the test set show a highly significant improvement of the recognition performance to more than 86%.
In recent years, libraries and archives all around the world have increased their efforts to digitize historical manuscripts. To integrate the manuscripts into digital libraries, pattern recognition and machine learning methods are needed to extract and index the contents of the scanned images. The unique compendium describes the outcome of the HisDoc research project, a pioneering attempt to study the whole processing chain of layout analysis, handwriting recognition, and retrieval of historical manuscripts. This description is complemented with an overview of other related research projects, in order to convey the current state of the art in the field and outline future trends. This must-have volume is a relevant reference work for librarians, archivists and computer scientists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.