This graduate-level introduction to ordinary differential equations combines both qualitative and numerical analysis of solutions, in line with Poincaré's vision for the field over a century ago. Taking into account the remarkable development of dynamical systems since then, the authors present the core topics that every young mathematician of our time—pure and applied alike—ought to learn. The book features a dynamical perspective that drives the motivating questions, the style of exposition, and the arguments and proof techniques. The text is organized in six cycles. The first cycle deals with the foundational questions of existence and uniqueness of solutions. The second introduces the basic tools, both theoretical and practical, for treating concrete problems. The third cycle presents autonomous and non-autonomous linear theory. Lyapunov stability theory forms the fourth cycle. The fifth one deals with the local theory, including the Grobman–Hartman theorem and the stable manifold theorem. The last cycle discusses global issues in the broader setting of differential equations on manifolds, culminating in the Poincaré–Hopf index theorem. The book is appropriate for use in a course or for self-study. The reader is assumed to have a basic knowledge of general topology, linear algebra, and analysis at the undergraduate level. Each chapter ends with a computational experiment, a diverse list of exercises, and detailed historical, biographical, and bibliographic notes seeking to help the reader form a clearer view of how the ideas in this field unfolded over time.
What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise from all branches of science and technology, like physics, chemistry, economics, ecology, communications, biology, computer science, or meteorology, to mention just a few. These systems have in common the fact that each possible state may be described by a finite (or infinite) number of observable quantities, like position, velocity, temperature, concentration, population density, and the like. Thus, m the space of states (phase space) is a subset M of an Euclidean space M . Usually, there are some constraints between these quantities: for instance, for ideal gases pressure times volume must be proportional to temperature. Then the space M is often a manifold, an n-dimensional surface for some n
Why did migrants from southern Portugal choose Argentina instead of following the traditional path to Brazil? Starting with this question, this book explores how, at the turn of the twentieth century, rural Europeans developed distinctive circuits of transatlantic labor migration linked to diverse immigrant communities in the Americas. It looks at transoceanic moves in the larger context of migration systems, examining their connections and the crucial role of social networks in migrants’ geographic mobility and adaptation. Combining regional and local perspectives on both sides of the Atlantic, Chains of Gold provides a vivid account of the trajectories of migrant men and women as they moved from rural Portugal to contrasting places of settlement in the Argentine pampas and Patagonia.
From the middle of the nineteenth century until the 1888 abolition of slavery in Brazil, Rio de Janeiro was home to the largest urban population of enslaved workers anywhere in the Americas. It was also the site of an incipient working-class consciousness that expressed itself across seemingly distinct social categories. In this volume, Marcelo Badaró Mattos demonstrates that these two historical phenomena cannot be understood in isolation. Drawing on a wide range of historical sources, Badaró Mattos reveals the diverse labor arrangements and associative life of Rio’s working class, from which emerged the many strategies that workers both free and unfree pursued in their struggles against oppression.
What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise from all branches of science and technology, like physics, chemistry, economics, ecology, communications, biology, computer science, or meteorology, to mention just a few. These systems have in common the fact that each possible state may be described by a finite (or infinite) number of observable quantities, like position, velocity, temperature, concentration, population density, and the like. Thus, m the space of states (phase space) is a subset M of an Euclidean space M . Usually, there are some constraints between these quantities: for instance, for ideal gases pressure times volume must be proportional to temperature. Then the space M is often a manifold, an n-dimensional surface for some n
This graduate-level introduction to ordinary differential equations combines both qualitative and numerical analysis of solutions, in line with Poincaré's vision for the field over a century ago. Taking into account the remarkable development of dynamical systems since then, the authors present the core topics that every young mathematician of our time—pure and applied alike—ought to learn. The book features a dynamical perspective that drives the motivating questions, the style of exposition, and the arguments and proof techniques. The text is organized in six cycles. The first cycle deals with the foundational questions of existence and uniqueness of solutions. The second introduces the basic tools, both theoretical and practical, for treating concrete problems. The third cycle presents autonomous and non-autonomous linear theory. Lyapunov stability theory forms the fourth cycle. The fifth one deals with the local theory, including the Grobman–Hartman theorem and the stable manifold theorem. The last cycle discusses global issues in the broader setting of differential equations on manifolds, culminating in the Poincaré–Hopf index theorem. The book is appropriate for use in a course or for self-study. The reader is assumed to have a basic knowledge of general topology, linear algebra, and analysis at the undergraduate level. Each chapter ends with a computational experiment, a diverse list of exercises, and detailed historical, biographical, and bibliographic notes seeking to help the reader form a clearer view of how the ideas in this field unfolded over time.
This graduate-level introduction to ordinary differential equations combines both qualitative and numerical analysis of solutions, in line with Poincaré's vision for the field over a century ago. Taking into account the remarkable development of dynamical systems since then, the authors present the core topics that every young mathematician of our time--pure and applied alike--ought to learn. The book features a dynamical perspective that drives the motivating questions, the style of exposition, and the arguments and proof techniques.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.