3D Integration is being touted as the next semiconductor revolution. This book provides a comprehensive coverage on the design and modeling aspects of 3D integration, in particularly, focus on its electrical behavior. Looking from the perspective the Silicon Via (TSV) and Glass Via (TGV) technology, the book introduces 3DICs and Interposers as a technology, and presents its application in numerical modeling, signal integrity, power integrity and thermal integrity. The authors underscored the potential of this technology in design exchange formats and power distribution.
The First Comprehensive, Example-Rich Guide to Power Integrity Modeling Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art. Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise. The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications. The authors Introduce power delivery network components, analysis, high-frequency measurement, and modeling requirements Thoroughly explain modeling of power/ground planes, including plane behavior, lumped modeling, distributed circuit-based approaches, and much more Offer in-depth coverage of simultaneous switching noise, including modeling for return currents using time- and frequency-domain analysis Introduce several leading time-domain simulation methods, such as macromodeling, and discuss their advantages and disadvantages Present the application of the modeling methods on several advanced case studies that include high-speed servers, high-speed differential signaling, chip package analysis, materials characterization, embedded decoupling capacitors, and electromagnetic bandgap structures This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.
An ode to systems engineers—whose invisible work undergirds our life—and an exploration of the wicked problems they tackle. Our world is filled with pernicious problems. How, for example, did novice pilots learn to fly without taking to the air and risking their lives? How should cities process mountains of waste without polluting the environment? Challenges that tangle personal, public, and planetary aspects—often occurring in health care, infrastructure, business, and policy—are known as wicked problems, and they are not going away anytime soon. In linked chapters focusing on key facets of systems engineering—efficiency, vagueness, vulnerability, safety, maintenance, and resilience—engineer Guru Madhavan illuminates how wicked problems have emerged throughout history and how best to address them in the future. He examines best-known tragedies and lesser-known tales, from the efficient design of battleships to a volcano eruption that curtailed global commerce, and how maintenance of our sanitation systems constitutes tikkun olam, or repair of our world. Braided throughout is the uplifting tale of Edwin Link, an unsung hero who revolutionized aviation with his flight trainer. In Link’s story, Madhavan uncovers a model mindset to engage with wickedness. An homage to society’s innovators and maintainers, Wicked Problems offers a refreshing vision for readers of all backgrounds to build a better future and demonstrates how engineering is a cultural choice—one that requires us to restlessly find ways to transform society, but perhaps more critically, to care for the creations that already exist.
The Coconut: Phylogeny, Origins, and Spread comprehensively covers the botany, phylogeny, origins, and spread of the coconut palm. The coconut is used primarily for its oil, fiber, and as an article of food, including its tender-nut water. Until the 1950s, coconut oil used to rank first in the world in production and international trade among all the vegetable oils. Since then, lower-cost sources such as the African oil palm, soybean, canola, and others have overtaken the coconut in oil production and trade. The coconut, Cocos nucifera L. (Arecaceae), is a dominant part of the littoral vegetation across the tropics. In addition to discussing the origins of the coconut and its use as a crop, the book covers the resurgence in the use of the coconut in food, pharmaceuticals, and nutraceuticals. - Presents the phylogeny, origins, and spread of the coconut - Explores the broad-based use of coconut from basic food source to nutraceuticals - Provides ethnobotanical information on cultivation and use of this tropical crop
“Engineers are titans of real-world problem-solving. . . . In this riveting study of how they think, [Guru Madhavan] puts behind-the-scenes geniuses . . . center stage.”—Nature In this engaging account of innovative triumphs, Guru Madhavan examines the ways in which engineers throughout history created world-changing tools, from ATMs and ZIP codes to the digital camera and the disposable diaper. Equal parts personal, practical, and profound, Applied Minds charts a path to a future where we borrow strategies from engineering to find inspired solutions to our most pressing challenges.
The First Comprehensive, Example-Rich Guide to Power Integrity Modeling Professionals such as signal integrity engineers, package designers, and system architects need to thoroughly understand signal and power integrity issues in order to successfully design packages and boards for high speed systems. Now, for the first time, there's a complete guide to power integrity modeling: everything you need to know, from the basics through the state of the art. Using realistic case studies and downloadable software examples, two leading experts demonstrate today's best techniques for designing and modeling interconnects to efficiently distribute power and minimize noise. The authors carefully introduce the core concepts of power distribution design, systematically present and compare leading techniques for modeling noise, and link these techniques to specific applications. Their many examples range from the simplest (using analytical equations to compute power supply noise) through complex system-level applications. The authors Introduce power delivery network components, analysis, high-frequency measurement, and modeling requirements Thoroughly explain modeling of power/ground planes, including plane behavior, lumped modeling, distributed circuit-based approaches, and much more Offer in-depth coverage of simultaneous switching noise, including modeling for return currents using time- and frequency-domain analysis Introduce several leading time-domain simulation methods, such as macromodeling, and discuss their advantages and disadvantages Present the application of the modeling methods on several advanced case studies that include high-speed servers, high-speed differential signaling, chip package analysis, materials characterization, embedded decoupling capacitors, and electromagnetic bandgap structures This book's system-level focus and practical examples will make it indispensable for every student and professional concerned with power integrity, including electrical engineers, system designers, signal integrity engineers, and materials scientists. It will also be valuable to developers building software that helps to analyze high-speed systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.