A highly accessible and unified approach to the design and analysis of intelligent control systems Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox. Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before. The authors provide readers with a thought-provoking framework for rigorously considering such questions as: * What properties should the function approximator have? * Are certain families of approximators superior to others? * Can the stability and the convergence of the approximator parameters be guaranteed? * Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects? * Can this approach handle significant changes in the dynamics due to such disruptions as system failure? * What types of nonlinear dynamic systems are amenable to this approach? * What are the limitations of adaptive approximation based control? Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.
The report presents a foundation of feedback control algorithms and associated modeling tools. This foundation is necessary for the future development of utility-specific control schemes. The ultimate vision adopted in the report is one of a multiple-input, multiple-output (MIMO) feedback control system, where booster chlorination stations are distributed at key points in the system and are fed information from distributed chlorine sensors located in critical areas. The report also presents the elements of a comprehensive design method for distributed chlorine controller design.Originally published by AwwaRF for its subscribers in 2003 This publication can be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below
Recent advances in information and communication technologies, embedded systems and sensor networks have generated significant research activity in the development of so-called cyber-physical systems. An example of a large network of cyber-physical systems is a smart city with intelligent infrastructures for supporting the environment, energy and water distribution, transportation, telecommunication, health care, home automation, and so on. From a systems point of view, safety, reliability and fault tolerance become key challenges in designing cyber-physical systems. One of the major issues is detecting and correcting faults in the sensors that form a critical part of these networks and systems. For example, if two sensors should provide similar information, how do you know which one is at fault should their readings suddenly greatly differ? Sensor Fault Diagnosis addresses all the issues in sensor fault detection and isolation. It provides a clear tutorial on the challenges and models that can be used to address them. It describes, in detail, the requirements for modeling the systems, designing the architecture, detecting faults, isolating those faults, and presents learning techniques for enhancing performance. This monograph will appeal to all researchers and students working on large sensor networks and systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.