The authors consider the Hodge Laplacian \Delta on the Heisenberg group H_n, endowed with a left-invariant and U(n)-invariant Riemannian metric. For 0\le k\le 2n+1, let \Delta_k denote the Hodge Laplacian restricted to k-forms. In this paper they address three main, related questions: (1) whether the L^2 and L^p-Hodge decompositions, 1
In this book, the authors treat the full Hodge theory for the de Rham complex when calculated in the Sobolev topology rather than in the $L2$ topology. The use of the Sobolev topology strikingly alters the problem from the classical setup and gives rise to a new class of elliptic boundary value problems. The study takes place on both the upper half space and on a smoothly bounded domain. It features: a good introduction to elliptic theory, pseudo-differential operators, and boundary value problems; theorems completely explained and proved; and new geometric tools for differential analysis on domains and manifolds.
Ever since the groundbreaking work of J.J. Kohn in the early 1960s, there has been a significant interaction between the theory of partial differential equations and the function theory of several complex variables. Partial Differential Equations and Complex Analysis explores the background and plumbs the depths of this symbiosis. The book is an excellent introduction to a variety of topics and presents many of the basic elements of linear partial differential equations in the context of how they are applied to the study of complex analysis. The author treats the Dirichlet and Neumann problems for elliptic equations and the related Schauder regularity theory, and examines how those results apply to the boundary regularity of biholomorphic mappings. He studies the ?-Neumann problem, then considers applications to the complex function theory of several variables and to the Bergman projection.
The volume contains the proceedings of the workshop Continuous Advances in QCD 2006, hosted by the Wiliam I Fine Theoretical Physics Institute. This biennial workshop was the seventh meeting of the series, held at the University of Minnesota since 1994. The workshop gathered together about 110 scientists (a record number for the event), including most of the leading experts in quantum chromodynamics and non-Abelian gauge theories in general.
In this text, the authors treat the full Hodge theory for the de Rham complex when calculated in the Sobolev topology rather than in the L2 topology. The use of the Sobolev topology strikingly alters the problem from the classical setup and gives rise to a new class of elliptic boundary value problems. The study takes place on both the upper half space and on a smoothly bounded domain.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.