Trackability and Tracking of General Linear Systems deals with five classes of the systems, three of which are new, begins with the definition of time together with a brief description of its crucial properties and with the principles of the physical uniqueness and continuity of physical variables. They are essential for the natural tracking control synthesis. The book presents further new results on the new compact, simple and elegant calculus that enabled the generalization of the transfer function matrix concept and of the state concept, the completion of the trackability and tracking concepts together with the proofs of the trackability and tracking criteria, as well as the natural tracking control synthesis for all five classes of the systems. Features • Crucially broadens the state space concept and the complex domain fundamentals of the dynamical systems to the control systems. • Addresses the knowledge and ability necessary to study and design control systems that will satisfy the fundamental control goal. • Outlines new effective mathematical means for effective complete analysis and synthesis of the control systems. • Upgrades, completes and essentially generalizes the control theory beyond the existing boundaries. • Provides information necessary to create and teach advanced inherently upgraded control courses.
Time and Consistent Relativity: Physical and Mathematical Fundamentals establishes a new and original theory of time relativity, which is fully consistent. It explains why Einstein's theory of time relativity is physically meaningless and mathematically based on tacit inacceptable assumptions, and why it represents the singular case from the mathem
This book aims to help the reader understand the linear continuous-time time-invariant dynamical systems theory and its importance for systems analysis and design of the systems operating in real conditions, i.e., in forced regimes under arbitrary initial conditions. The text completely covers IO, ISO and IIO systems. It introduces the concept of the system full matrix P(s) in the complex domain and establishes its link with the also newly introduced system full transfer function matrix F(s). The text establishes the full block diagram technique based on the use of F(s), which incorporates the Laplace transform of the input vector and the vector of all initial conditions. It explores the direct relationship between the system full transfer function matrix F(s) and the Lyapunov stability concept, definitions and conditions, as well as with the BI stability concept, definitions, and conditions. The goal of the book is to unify the study and applications of all three classes of the of the linear continuous-time time-invariant systems, for short systems.
Tracking is the goal of control of any object, plant, process, or vehicle. From vehicles and missiles to power plants, tracking is essential to guarantee high-quality behavior. Nonlinear Systems Tracking establishes the tracking theory, trackability theory, and tracking control synthesis for time-varying nonlinear plants and their control systems as parts of control theory. Treating general dynamical and control systems, including subclasses of input-output and state-space nonlinear systems, the book: Describes the crucial tracking control concepts that comprise effective tracking control algorithms Defines the main tracking and trackability properties involved, identifying properties both perfect and imperfect Details the corresponding conditions needed for the controlled plant to exhibit each property Discusses various algorithms for tracking control synthesis, attacking the tracking control synthesis problems themselves Depicts the effective synthesis of the tracking control, under the action of which, the plant behavior satisfies all the imposed tracking requirements resulting from its purpose With clarity and precision, Nonlinear Systems Tracking provides original coverage, presenting discovery and proofs of new tracking criteria and control algorithms. Thus, the book creates new directions for research in control theory, enabling fruitful new control engineering applications.
This book covers crucial lacunae of the linear discrete-time time-invariant dynamical systems and introduces the reader to their treatment, while functioning under real, natural conditions, in forced regimes with arbitrary initial conditions. It provides novel theoretical tools necessary for the analysis and design of the systems operating in stated conditions. The text completely covers two well-known systems, IO and ISO, along with a new system, IIO. It discovers the concept of the full transfer function matrix F(z) in the z-complex domain, which incorporates the Z-transform of the system, input and another variable, vectors, all with arbitrary initial conditions. Consequently, it addresses the full system matrix P(z) and the full block diagram technique based on the use of F(z), which incorporates the Z-transform of the system, input and another variable, vectors, all with arbitrary initial conditions. The book explores the direct relationship between the system full transfer function matrix F(z) and the Lyapunov stability concept, definitions, and conditions, as well as with the BI stability concept, definitions, and conditions. The goal of the book is to unify the study and applications of all three classes of the linear discrete-time time-invariant system, for short systems.
The primary purpose of control is to force desired behavior in an unpredictable environment, under the actions of unknown, possibly unmeasurable disturbances and unpredictable, and therefore probably nonzero, initial conditions. This means that tracking and tracking control synthesis are fundamental control issues. Surprisingly, however, tracking theory has not been well developed, and stability theory has dominated. Tracking Control of Linear Systems presents the fundamentals of tracking theory for control systems. The book introduces the full transfer function matrix F(s), which substantially changes the theory of linear dynamical and control systems and enables a novel synthesis of tracking control that works more effectively in real environments. An Introduction to the New Fundamentals of the Theory of Linear Control Systems The book begins by re-examining classic linear control systems theory. It then defines and determines the system full (complete) transfer function matrix F(s) for two classes of systems: input-output (IO) control systems and input-state-output (ISO) control systems. The book also discusses the fundamentals of tracking and trackability. It presents new Lyapunov tracking control algorithms and natural tracking control (NTC) algorithms, which ensure the quality of the tracking under arbitrary disturbances and initial conditions. This natural tracking control is robust, adaptable, and simple to implement. Advances in Linear Control Systems Theory: Tracking and Trackability This book familiarizes readers with novel, sophisticated approaches and methods for tracking control design in real conditions. Contributing to the advancement of linear control systems theory, this work opens new directions for research in time-invariant continuous-time linear control systems. It builds on previous works in the field, extending treatment o
Observability and Controllability of General Linear Systems treats five different families of the linear systems, three of which are new. The book begins with the definition of time together with a brief description of its crucial properties. It presents further new results on matrices, on polynomial matrices, on matrix polynomials, on rational matrices, and on the new compact, simple and elegant calculus that enabled the generalization of the transfer function matrix concept and of the state concept, the proofs of the new necessary and sufficient observability and controllability conditions for all five classes of the studied systems. Features • Generalizes the state space concept and the complex domain fundamentals of the control systems unknown in previously published books by other authors. • Addresses the knowledge and ability necessary to overcome the crucial lacunae of the existing control theory and drawbacks of its applications. • Outlines new effective mathematical means for effective complete analysis and synthesis of the control systems. • Upgrades, completes and broadens the control theory related to the classical self-contained control concepts: observability and controllability. • Provides information necessary to create and teach advanced inherently upgraded control courses.
Stability Domains is an up-to-date account of stability theory with particular emphasis on stability domains. Beyond the fundamental basis of the theory of dynamical systems, it includes recent developments in the classical Lyapunov stability concept, practical stabiliy properties, and a new Lyapunov methodology for nonlinear systems. It also introduces classical Lyapunov and practical stability theory for time-invariant nonlinear systems in general and for complex (interconnected, large scale) nonlinear dynamical systems in particular. This is a complete treatment of the theory of stability domains useful for postgraduates and researchers working in this area of applied mathematics and engineering.
Tracking is the goal of control of any object, plant, process, or vehicle. From vehicles and missiles to power plants, tracking is essential to guarantee high-quality behavior. Nonlinear Systems Tracking establishes the tracking theory, trackability theory, and tracking control synthesis for time-varying nonlinear plants and their control systems as parts of control theory. Treating general dynamical and control systems, including subclasses of input-output and state-space nonlinear systems, the book: Describes the crucial tracking control concepts that comprise effective tracking control algorithms Defines the main tracking and trackability properties involved, identifying properties both perfect and imperfect Details the corresponding conditions needed for the controlled plant to exhibit each property Discusses various algorithms for tracking control synthesis, attacking the tracking control synthesis problems themselves Depicts the effective synthesis of the tracking control, under the action of which, the plant behavior satisfies all the imposed tracking requirements resulting from its purpose With clarity and precision, Nonlinear Systems Tracking provides original coverage, presenting discovery and proofs of new tracking criteria and control algorithms. Thus, the book creates new directions for research in control theory, enabling fruitful new control engineering applications.
Time and Consistent Relativity: Physical and Mathematical Fundamentals establishes a new and original theory of time relativity, which is fully consistent. It explains why Einstein's theory of time relativity is physically meaningless and mathematically based on tacit inacceptable assumptions, and why it represents the singular case from the mathem
This book aims to help the reader understand the linear continuous-time time-invariant dynamical systems theory and its importance for systems analysis and design of the systems operating in real conditions, i.e., in forced regimes under arbitrary initial conditions. The text completely covers IO, ISO and IIO systems. It introduces the concept of the system full matrix P(s) in the complex domain and establishes its link with the also newly introduced system full transfer function matrix F(s). The text establishes the full block diagram technique based on the use of F(s), which incorporates the Laplace transform of the input vector and the vector of all initial conditions. It explores the direct relationship between the system full transfer function matrix F(s) and the Lyapunov stability concept, definitions and conditions, as well as with the BI stability concept, definitions, and conditions. The goal of the book is to unify the study and applications of all three classes of the of the linear continuous-time time-invariant systems, for short systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.