Choice Recommended Title, February 2020 This book explores quantum field theory using the Feynman functional and diagrammatic techniques as foundations to apply Quantum Field Theory to a broad range of topics in physics. This book will be of interest not only to condensed matter physicists but physicists in a range of disciplines as the techniques explored apply to high-energy as well as soft matter physics. Features: Comprehensive and rigorous, yet presents an easy to understand approach Applicable to a wide range of disciplines Accessible to those with little, or basic, mathematical understanding
This book presents an accessible treatment of non-relativistic and relativistic quantum mechanics. It is an ideal textbook for undergraduate and graduate physics students, and is also useful to researchers in theoretical physics, quantum mechanics, condensed matter, mathematical physics, quantum chemistry, and electronics. This student-friendly and self-contained textbook covers the typical topics in a core undergraduate program, as well as more advanced, graduate-level topics with an elegant mathematical rigor, contemporary style, and rejuvenated approach. It balances theory and worked examples, which reinforces readers' understanding of fundamental concepts. The analytical methods employed in this book describe physical situations with mathematical rigor and in-depth clarity, emphasizing the essential understanding of the subject matter without need for prior knowledge of classical mechanics, electromagnetic theory, atomic structure, or differential equations. Key Features: • Remains accessible but incorporates a rigorous, updated mathematical treatment • Laid out in a student-friendly structure • Balances theory with its application through examples Lukong Cornelius Fai is a professor of theoretical physics at the Department of Physics, Faculty of Sciences, University of Dschang, Cameroon. He is Head of Condensed Matter and Nanomaterials as well as the Mesoscopic and Multilayer Structures Laboratory. He was formerly a senior associate at the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy. He holds a Master of Science in Physics and Mathematics (1991) as well as a Doctor of Science in Physics and Mathematics (1997) from Moldova State University. He is the author of over 170 scientific publications and five textbooks.
This book provides an ideal introduction to the use of Feynman path integrals in the fields of quantum mechanics and statistical physics. It is written for graduate students and researchers in physics, mathematical physics, applied mathematics as well as chemistry. The material is presented in an accessible manner for readers with little knowledge of quantum mechanics and no prior exposure to path integrals. It begins with elementary concepts and a review of quantum mechanics that gradually builds the framework for the Feynman path integrals and how they are applied to problems in quantum mechanics and statistical physics. Problem sets throughout the book allow readers to test their understanding and reinforce the explanations of the theory in real situations. Features: Comprehensive and rigorous yet, presents an easy-to-understand approach. Applicable to a wide range of disciplines. Accessible to those with little, or basic, mathematical understanding.
Choice Recommended Title, February 2020 This book explores quantum field theory using the Feynman functional and diagrammatic techniques as foundations to apply Quantum Field Theory to a broad range of topics in physics. This book will be of interest not only to condensed matter physicists but physicists in a range of disciplines as the techniques explored apply to high-energy as well as soft matter physics. Features: Comprehensive and rigorous, yet presents an easy to understand approach Applicable to a wide range of disciplines Accessible to those with little, or basic, mathematical understanding
Statistical thermodynamics and the related domains of statistical physics and quantum mechanics are very important in many fields of research, including plasmas, rarefied gas dynamics, nuclear systems, lasers, semiconductors, superconductivity, ortho- and para-hydrogen, liquid helium, and so on. Statistical Thermodynamics: Understanding the Properties of Macroscopic Systems provides a detailed overview of how to apply statistical principles to obtain the physical and thermodynamic properties of macroscopic systems. Intended for physics, chemistry, and other science students at the graduate level, the book starts with fundamental principles of statistical physics, before diving into thermodynamics. Going further than many advanced textbooks, it includes Bose-Einstein, Fermi-Dirac statistics, and Lattice dynamics as well as applications in polaron theory, electronic gas in a magnetic field, thermodynamics of dielectrics, and magnetic materials in a magnetic field. The book concludes with an examination of statistical thermodynamics using functional integration and Feynman path integrals, and includes a wide range of problems with solutions that explain the theory.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.