This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
This book deals with analytic problems related to some developments and generalizations of the Boltzmann equation toward the modeling and qualitative analysis of large systems that are of interest in applied sciences. These generalizations are documented in the various surveys edited by Bellomo and Pulvirenti with reference to models of granular media, traffic flow, mathematical biology, communication networks, and coagulation models. The first generalization dealt with refers to the averaged Boltzmann equation, which is obtained by suitable averaging of the distribution function of the field particles into the action domain of the test particle. This model is further developed to describe equations with dissipative collisions and a class of models that are of interest in mathematical biology. In this latter case the state of the particles is defined not only by a mechanical variable but also by a biological microscopic state.
This is a collection of four lectures on some mathematical aspects related to the nonlinear Boltzmann equation. The following topics are dealt with: derivation of kinetic equations, qualitative analysis of the initial value problem, singular perturbation analysis towards the hydrodynamic limit and computational methods towards the solution of problems in fluid dynamics.
This book deals with analytic problems related to some developments and generalizations of the Boltzmann equation toward the modeling and qualitative analysis of large systems that are of interest in applied sciences. These generalizations are documented in the various surveys edited by Bellomo and Pulvirenti with reference to models of granular media, traffic flow, mathematical biology, communication networks, and coagulation models. The first generalization dealt with refers to the averaged Boltzmann equation, which is obtained by suitable averaging of the distribution function of the field particles into the action domain of the test particle. This model is further developed to describe equations with dissipative collisions and a class of models that are of interest in mathematical biology. In this latter case the state of the particles is defined not only by a mechanical variable but also by a biological microscopic state.
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
This book deals with analytic problems related to some developments and generalizations of the Boltzmann equation toward the modeling and qualitative analysis of large systems that are of interest in applied sciences. These generalizations are documented in the various surveys edited by Bellomo and Pulvirenti with reference to models of granular media, traffic flow, mathematical biology, communication networks, and coagulation models.The above literature motivates applied mathematicians to study the Cauchy problem and to develop an asymptotic analysis for models regarded as developments of the Boltzmann equation. This book aims to initiate the research plan by the analyzing afore mentioned analysis problems.The first generalization dealt with refers to the averaged Boltzmann equation, which is obtained by suitable averaging of the distribution function of the field particles into the action domain of the test particle. This model is further developed to describe equations with dissipative collisions and a class of models that are of interest in mathematical biology. In this latter case the state of the particles is defined not only by a mechanical variable but also by a biological microscopic state.The book is essentially devoted to analytic aspects and deals with the analysis of the Cauchy problem and with the development of an asymptotic theory to obtain the macroscopic description from the mesoscopic one.
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.