Contributed in honour of Lucien Le Cam on the occasion of his 70th birthday, the papers reflect the immense influence that his work has had on modern statistics. They include discussions of his seminal ideas, historical perspectives, and contributions to current research - spanning two centuries with a new translation of a paper of Daniel Bernoulli. The volume begins with a paper by Aalen, which describes Le Cams role in the founding of the martingale analysis of point processes, and ends with one by Yu, exploring the position of just one of Le Cams ideas in modern semiparametric theory. The other 27 papers touch on areas such as local asymptotic normality, contiguity, efficiency, admissibility, minimaxity, empirical process theory, and biological medical, and meteorological applications - where Le Cams insights have laid the foundations for new theories.
This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.
In the summer of 1968 one of the present authors (LLC) had the pleasure of giving a sequence of lectures at the University of Mon treal. Lecture notes were collected and written out by Drs. Catherine Doleans, Jean Haezendonck and Roch Roy. They were published in French by the Presses of the University of Montreal as part of their series of Seminaires de Mathematiques Superieures. Twenty years later it was decided that a Chinese translation could be useful, but upon prodding by Professor Shanti Gupta at Purdue we concluded that the notes should be updated and rewritten in English and in Chinese. The present volume is the result of that effort. We have preserved the general outline of the lecture notes, but we have deleted obsolete material and sketched some of the results acquired during the past twenty years. This means that while the original notes concentrated on the LAN situation we have included here some results of Jeganathan and others on the LAMN case. Also included are versions of the Hajek-Le Cam asymptotic minimax and convolution theorems with some of their implications. We have not attempted to give complete coverage of the subject and have often stated theorems without indicating their proofs.
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.
The present volume represents the Proceedings of an International Research Seminar organized in 1963 by the Statistical Laboratory, Uni versity of California, Berkeley, on the occasion of a remarkable triple anniversary: the 250th anniversary of jACOB BERNOULLI's "Ars Conjectandi", the 200th anniversary of THOMAS BAYES' "Essay towards solving a problem in doctrine of chance", and the!50th anniversary of the PIERRE-SIMON DE LAPLACE's "Essai philosophique sur les probabilites". Financial assistance of the National Science Foundation, without which the Seminar could not have been held, is gratefully acknowledged. The publication of Ars Conjectandi, in 1713, was a milestone in the history of probability theory. Here, for the first time, appeared a careful description of the now well-known combinatorial methods which give solutions of many problems on simple games of chance. Also, Ars Conjectandi contains the Bernoulli numbers, theorems relating to the duration of games, and to the ruin of gamblers and, above all, the state ment and proof of the famous Bernoulli weak law of large numbers. Even though the original Latin edition of Ars Conjectandi was followed by several in modern languages, currently the book is not easily accessible. Apparently the last re-publication, in German, occurred in 1899, in two issues, No. 107 and No. 108, of the series "Ostwald's Klassi ker der exakten Wissenschaften", Wilhelm Engelman, Leipzig. The two books are difficult to locate
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.