The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.
This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.
Selected Papers from the 25th University of Arkansas Spring Lecture Series, Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View, March 2-4, 2000, Fayetteville, Arkansas
Selected Papers from the 25th University of Arkansas Spring Lecture Series, Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View, March 2-4, 2000, Fayetteville, Arkansas
This volume presents research and expository articles by the participants of the 25th Arkansas Spring Lecture Series on ``Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View'' held at the University of Arkansas (Fayetteville). Papers in this volume provide clear and concise presentations of many problems that are at the forefront of harmonic analysis and partial differential equations. The following topics are featured: the solution of the Kato conjecture, the ``two bricks'' problem, new results on Cauchy integrals on non-smooth curves, the Neumann problem for sub-Laplacians, and a new general approach to both divergence and nondivergence second order parabolic equations based on growth theorems. The articles in this volume offer both students and researchers a comprehensive volume of current results in the field.
Recent developments in geometric measure theory and harmonic analysis have led to new and deep results concerning the regularity of the support of measures which behave "asymptotically" (for balls of small radius) as the Euclidean volume. A striking feature of these results is that they actually characterize flatness of the support in terms of the asymptotic behavior of the measure. Such characterizations have led to important new progress in the study of harmonic measure fornon-smooth domains. This volume provides an up-to-date overview and an introduction to the research literature in this area. The presentation follows a series of five lectures given by Carlos Kenig at the 2000 Arkansas Spring Lecture Series. The original lectures have been expanded and updated to reflectthe rapid progress in this field. A chapter on the planar case has been added to provide a historical perspective. Additional background has been included to make the material accessible to advanced graduate students and researchers in harmonic analysis and geometric measure theory.
Hörmander operators are a class of linear second order partial differential operators with nonnegative characteristic form and smooth coefficients, which are usually degenerate elliptic-parabolic, but nevertheless hypoelliptic, that is highly regularizing. The study of these operators began with the 1967 fundamental paper by Lars Hörmander and is intimately connected to the geometry of vector fields.Motivations for the study of Hörmander operators come for instance from Kolmogorov-Fokker-Planck equations arising from modeling physical systems governed by stochastic equations and the geometric theory of several complex variables. The aim of this book is to give a systematic exposition of a relevant part of the theory of Hörmander operators and vector fields, together with the necessary background and prerequisites.The book is intended for self-study, or as a reference book, and can be useful to both younger and senior researchers, already working in this area or aiming to approach it.
This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.
Recent developments in geometric measure theory and harmonic analysis have led to new and deep results concerning the regularity of the support of measures which behave "asymptotically" (for balls of small radius) as the Euclidean volume. A striking feature of these results is that they actually characterize flatness of the support in terms of the asymptotic behavior of the measure. Such characterizations have led to important new progress in the study of harmonic measure fornon-smooth domains. This volume provides an up-to-date overview and an introduction to the research literature in this area. The presentation follows a series of five lectures given by Carlos Kenig at the 2000 Arkansas Spring Lecture Series. The original lectures have been expanded and updated to reflectthe rapid progress in this field. A chapter on the planar case has been added to provide a historical perspective. Additional background has been included to make the material accessible to advanced graduate students and researchers in harmonic analysis and geometric measure theory.
The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.
Selected Papers from the 25th University of Arkansas Spring Lecture Series, Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View, March 2-4, 2000, Fayetteville, Arkansas
Selected Papers from the 25th University of Arkansas Spring Lecture Series, Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View, March 2-4, 2000, Fayetteville, Arkansas
This volume presents research and expository articles by the participants of the 25th Arkansas Spring Lecture Series on ``Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View'' held at the University of Arkansas (Fayetteville). Papers in this volume provide clear and concise presentations of many problems that are at the forefront of harmonic analysis and partial differential equations. The following topics are featured: the solution of the Kato conjecture, the ``two bricks'' problem, new results on Cauchy integrals on non-smooth curves, the Neumann problem for sub-Laplacians, and a new general approach to both divergence and nondivergence second order parabolic equations based on growth theorems. The articles in this volume offer both students and researchers a comprehensive volume of current results in the field.
This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.