This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.
An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.
This book constitutes the refereed proceedings of the 12th European Conference on Machine Learning, ECML 2001, held in Freiburg, Germany, in September 2001. The 50 revised full papers presented together with four invited contributions were carefully reviewed and selected from a total of 140 submissions. Among the topics covered are classifier systems, naive-Bayes classification, rule learning, decision tree-based classification, Web mining, equation discovery, inductive logic programming, text categorization, agent learning, backpropagation, reinforcement learning, sequence prediction, sequential decisions, classification learning, sampling, and semi-supervised learning.
The fascinating history of bell music The carillon, the world’s largest musical instrument, originated in the 16th century when inhabitants of the Low Countries started to produce music on bells in church and city towers. Today, carillon music still fills the soundscape of cities in Belgium and the Netherlands. Since the First World War, carillon music has become popular in the United States, where it adds a spiritual dimension to public parks and university campuses. Singing Bronze opens up the fascinating world of the carillon to the reader. It tells the great stories of European and American carillon history: the quest for the perfect musical bell, the fate of carillons in times of revolt and war, the role of patrons such as John D. Rockefeller Jr. and Herbert Hoover in the development of American carillon culture, and the battle between singing bronze and carillon electronics. Richly illustrated with original photographs and etchings, Singing Bronzetells how people developed, played, and enjoyed bell music. With this book, a fascinating history that is yet little known is made available for a wide public.
In the last few years rapid advances have been made in reproductive medicine, making it necessary for those involved to regularly update their knowledge. The purpose of this book is to describe the state of the art in this field, making it possible for the reader to gain an orientation among all the diagnostic and therapeutic potentials of modern reproductive medicine in order to advise patients fully. Chapters from the fields of gynecology, and reproductive medicine in a specific sense provide knowledge about these subjects. Authors of international standing have contributed chapters on their specialties. These chapters together form a book describing the state of the art in the diagnosis and therapy of sterility in gynecology and andrology.
This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.
This book constitutes the refereed proceedings of the 12th European Conference on Machine Learning, ECML 2001, held in Freiburg, Germany, in September 2001. The 50 revised full papers presented together with four invited contributions were carefully reviewed and selected from a total of 140 submissions. Among the topics covered are classifier systems, naive-Bayes classification, rule learning, decision tree-based classification, Web mining, equation discovery, inductive logic programming, text categorization, agent learning, backpropagation, reinforcement learning, sequence prediction, sequential decisions, classification learning, sampling, and semi-supervised learning.
This volume contains the proceedings of the European Conference on Machine Learning 1994, which continues the tradition of earlier meetings and which is a major forum for the presentation of the latest and most significant results in machine learning. Machine learning is one of the most important subfields of artificial intelligence and computer science, as it is concerned with the automation of learning processes. This volume contains two invited papers, 19 regular papers, and 25 short papers carefully reviewed and selected from in total 88 submissions. The papers describe techniques, algorithms, implementations, and experiments in the area of machine learning.
This book constitutes the refereed proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2001, held in Freiburg, Germany, in September 2001. The 40 revised full papers presented together with four invited contributions were carefully reviewed and selected from close to 100 submissions. Among the topics addressed are hidden Markov models, text summarization, supervised learning, unsupervised learning, demographic data analysis, phenotype data mining, spatio-temporal clustering, Web-usage analysis, association rules, clustering algorithms, time series analysis, rule discovery, text categorization, self-organizing maps, filtering, reinforcemant learning, support vector machines, visual data mining, and machine learning.
This book constitutes the refereed proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2001, held in Freiburg, Germany, in September 2001. The 40 revised full papers presented together with four invited contributions were carefully reviewed and selected from close to 100 submissions. Among the topics addressed are hidden Markov models, text summarization, supervised learning, unsupervised learning, demographic data analysis, phenotype data mining, spatio-temporal clustering, Web-usage analysis, association rules, clustering algorithms, time series analysis, rule discovery, text categorization, self-organizing maps, filtering, reinforcemant learning, support vector machines, visual data mining, and machine learning.
The interconnected ideas of inductive databases and constraint-based mining are appealing and have the potential to radically change the theory and practice of data mining and knowledge discovery. This book reports on the results of the European IST project "cInQ" (consortium on knowledge discovery by Inductive Queries) and its final workshop entitled Constraint-Based Mining and Inductive Databases organized in Hinterzarten, Germany in March 2004.
The interconnected ideas of inductive databases and constraint-based mining are appealing and have the potential to radically change the theory and practice of data mining and knowledge discovery. This book reports on the results of the European IST project "cInQ" (consortium on knowledge discovery by Inductive Queries) and its final workshop entitled Constraint-Based Mining and Inductive Databases organized in Hinterzarten, Germany in March 2004.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.