Piecewise constant systems exist in widely expanded areas such as engineering, physics, and mathematics. Extraordinary and complex characteristics of piecewise constant systems have been reported in recent years. This book provides the methodologies for analyzing and assessing nonlinear piecewise constant systems on a theoretically and practically sound basis. Recently developed approaches for theoretically analyzing and numerically solving the nonlinear piecewise constant dynamic systems are reviewed. A new greatest integer argument with a piecewise constant function is utilized for nonlinear dynamic analyses and for establishing a novel criterion in diagnosing irregular and chaotic solutions from the regular solutions of a nonlinear dynamic system. The newly established piecewise constantization methodology and its implementation in analytically solving for nonlinear dynamic problems are also presented.
The age of nanotechnology is upon us. Engineering at the molecular level is no longer a computer-generated curiosity and is beginning to affect the lives of everyone. Molecules which can respond to their environment and the smart machines we can build with them are and will continue to be a vital part of this 21st-century revolution. Liming Dai presents the latest work on many newly-discovered intelligent macromolecular systems and reviews their uses in nano-devices. Intelligent Macromolecules for Smart Devices features: - An accessible assessment of the properties and materials chemistry of all the major classes of intelligent macromolecules from optoelectronic biomacromolecules to dendrimers, artificial opals and carbon nanotubes - In-depth analysis of various smart devices including a critique of the suitability of different molecules for building each type of device - A concise compilation of the practical applications of intelligent macromolecules including sensors and actuators, polymer batteries, carbon-nanotube supercapacitors, novel lasing species and photovoltaic cells As an exposition of cutting-edge research against a backdrop of comprehensive review, Intelligent Macromolecules for Smart Devices will be an essential addition to the bookshelf of academic and industrial researchers in nanotechnology. Graduate and senior undergraduate students looking to make their mark in this field of the future will also find it most instructive.
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents The Research Process for Rogue Waves Construction of Rogue Wave Solution by the Generalized Darboux Transformation Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model
Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more. - Covers models for applications, along with the fundamentals of the mechanisms behind the models - Tackles the difficult interdisciplinary nature of the subject, combining macroscopic continuum mechanics with thermodynamics and macro-mechanics expression with micro-physical mechanisms - Provides a review of the latest experimental methods for the equation of state for solids under high pressure and the distortional law under high strain-rates of materials
THE FIRST PRACTICAL GUIDE FOR OPERATIONALIZING RESPONSIBLE AI ̃FROM MUL TI°LEVEL GOVERNANCE MECHANISMS TO CONCRETE DESIGN PATTERNS AND SOFTWARE ENGINEERING TECHNIQUES. AI is solving real-world challenges and transforming industries. Yet, there are serious concerns about its ability to behave and make decisions in a responsible way. Operationalizing responsible AI is about providing concrete guidelines to a wide range of decisionmakers and technologists on how to govern, design, and build responsible AI systems. These include governance mechanisms at the industry, organizational, and team level; software engineering best practices; architecture styles and design patterns; system-level techniques connecting code with data and models; and trade-offs in design decisions. Responsible AI includes a set of practices that technologists (for example, technology-conversant decision-makers, software developers, and AI practitioners) can undertake to ensure the AI systems they develop or adopt are trustworthy throughout the entire lifecycle and can be trusted by those who use them. The book offers guidelines and best practices not just for the AI part of a system, but also for the much larger software infrastructure that typically wraps around the AI. First book of its kind to cover the topic of operationalizing responsible AI from the perspective of the entire software development life cycle. Concrete and actionable guidelines throughout the lifecycle of AI systems, including governance mechanisms, process best practices, design patterns, and system engineering techniques. Authors are leading experts in the areas of responsible technology, AI engineering, and software engineering. Reduce the risks of AI adoption, accelerate AI adoption in responsible ways, and translate ethical principles into products, consultancy, and policy impact to support the AI industry. Online repository of patterns, techniques, examples, and playbooks kept up-to-date by the authors. Real world case studies to demonstrate responsible AI in practice. Chart the course to responsible AI excellence, from governance to design, with actionable insights and engineering prowess found in this defi nitive guide.
This book investigates how schools, enterprises and families in China have coped with the formal online education in the light of government policy throughout the COVID-19 epidemic outbreak, with special focus on the problems they have encountered and possible solutions. Using grounded theory, over 1000 posts retrieved from public online forums were analyzed under a 4*4 framework, referring to four special time nodes (proposal period, exploratory period, full deployed period, exiting period) and four major subjects (government, schools, enterprises, families). The book identifies four main issues faced by massive online education during the epidemic: platform selection in proposal period, teacher training in exploratory period, resource integration in full deployed period, and flexibility of returning to schools in exiting period. These findings enlighten us with a deeper understanding of the process of online learning in an educational emergency, helping to develop best countermeasures in similar situations, as well as to provide paths to follow for other countries. The book will appeal to teachers, researchers and school administrators of the online education and education emergency management, as well as those who are interested in Chinese education during the COVID-19 outbreak in general.
This book expands on the subject matter of ’Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy-Current Nondestructive Evaluation.’ It includes (a) voxel-based inversion methods, which are generalizations of model-based algorithms; (b) a complete electromagnetic model of advanced composites (and other novel exotic materials), stressing the highly anisotropic nature of these materials, as well as giving a number of applications to nondestructive evaluation; and (c) an up-to-date discussion of stochastic integral equations and propagation-of-uncertainty models in nondestructive evaluation. As such, the book combines research started twenty-five years ago in advanced composites and voxel-based algorithms, but published in scattered journal articles, as well as recent research in stochastic integral equations. All of these areas are of considerable interest to the aerospace, nuclear power, civil infrastructure, materials characterization and biomedical industries. The book covers the topic of computational electromagnetics in eddy-current nondestructive evaluation (NDE) by emphasizing three distinct topics: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. It is therefore more than an academic exercise and is valuable to users of eddy-current NDE technology in industries as varied as nuclear power, aerospace, materials characterization and biomedical imaging.
This book states that a space-induced crisis is recognized as the cause of trouble that Moore’s Law is currently facing. The contemporary practice of this empirical law can be considered as happening within a space-dominant paradigm. An alternative of exploiting potential in the dimension of time is identified as an emerging paradigm in microelectronics. The new practice is termed a time-oriented paradigm. It is justified as the turn of Moore’s Law from space to time. The resultant Time-Moore strategy is envisioned as the next-generation enabler for continuing Moore’s Law’s pursuit of everhigher information processing power and efficiency. It also serves as the perpetuation of the spirit that Moore’s law is nothing but a collective storied history of innovations. In the first part of this book, by following Thomas Kuhn’s seminal work around the concepts of paradigm and scientific revolution, the argument for the Time-Moore strategy (Time-Moore: to use time more) and the paradigm shift from space to time is carried out heavily through philosophical persuasion rather than technical proof due to the difficult challenge of change-of-mindset. The second part of the book provides solid technical materials for supporting this transition from the old paradigm to the new one. In short, the goal of this book is to reevaluate the contemporary practice of microelectronics, identify the cause of the current crisis, advocate a change-of-mindset to circumvent the crisis, and ultimately point out a new route for advancing. After achieving so many unprecedented accomplishments through several decades of relentless endeavor, it’s time for the big ship of Moore’s Law (i.e., the art of microelectronic system design) to make a turn.
Climate change is an inevitable and urgent global challenge with long-term implications for the sustainable development of all countries. To overcome this human crisis, the scientific consensus is driving global action towards low carbon economics. Though this action has to involve all sectors (industries, governments, and citizens) and at all levels (global, national and regional levels), the implementation of climate strategies will predominantly be at the regional level. By establishing an innovative range of model technologies, this book aims to develop systematic quantificational methods, such as uncertain multi-objective programming models and system dynamics models, to provide a new approach to low carbon economics that can serve as a paradigm for general regions. At the same time, it offers decision makers a number of effective strategies for some key issues in regional low carbon development, such as greenhouse gas control, ecological capacity evaluation, regional economic prediction, energy structure optimization, land resource utilization, industrial structure adjustment, low carbon industrial chains, low carbon transportation systems and low carbon tourism. It also provides researchers with a new perspective on how to address social problems using quantitative techniques.
The age of nanotechnology is upon us. Engineering at the molecular level is no longer a computer-generated curiosity and is beginning to affect the lives of everyone. Molecules which can respond to their environment and the smart machines we can build with them are and will continue to be a vital part of this 21st-century revolution. Liming Dai presents the latest work on many newly-discovered intelligent macromolecular systems and reviews their uses in nano-devices. Intelligent Macromolecules for Smart Devices features: - An accessible assessment of the properties and materials chemistry of all the major classes of intelligent macromolecules from optoelectronic biomacromolecules to dendrimers, artificial opals and carbon nanotubes - In-depth analysis of various smart devices including a critique of the suitability of different molecules for building each type of device - A concise compilation of the practical applications of intelligent macromolecules including sensors and actuators, polymer batteries, carbon-nanotube supercapacitors, novel lasing species and photovoltaic cells As an exposition of cutting-edge research against a backdrop of comprehensive review, Intelligent Macromolecules for Smart Devices will be an essential addition to the bookshelf of academic and industrial researchers in nanotechnology. Graduate and senior undergraduate students looking to make their mark in this field of the future will also find it most instructive.
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.
This book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for vertical vibration, and rocking vibration of a rigid rectangular mass-less plate, and horizontal vibration of a rigid mass-less plate are presented. Throughout the book, a strong emphasis is placed on applications, and a laboratory model for elastic half-space medium is provided.
Piecewise constant systems exist in widely expanded areas such as engineering, physics, and mathematics. Extraordinary and complex characteristics of piecewise constant systems have been reported in recent years. This book provides the methodologies for analyzing and assessing nonlinear piecewise constant systems on a theoretically and practically sound basis. Recently developed approaches for theoretically analyzing and numerically solving the nonlinear piecewise constant dynamic systems are reviewed. A new greatest integer argument with a piecewise constant function is utilized for nonlinear dynamic analyses and for establishing a novel criterion in diagnosing irregular and chaotic solutions from the regular solutions of a nonlinear dynamic system. The newly established piecewise constantization methodology and its implementation in analytically solving for nonlinear dynamic problems are also presented.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.