In this provocative urban history, Lila Corwin Berman considers the role that Detroit s Jews have played in the city s well-known narratives of migration and decline. Like other Detroiters in the 1960s and 1970s, Jews left the city for the suburbs in large numbers. But Berman makes the case that they nevertheless constituted themselves as urban people, and she shows how complex spatial and political relationships existed within the greater metropolitan region. By insisting on the existence and influence of a metropolitan consciousness, Berman reveals the complexity and contingency of what did and didn t change as regions expanded in the postwar era.
The field of antibody engineering has become a vital and integral part of making new, improved next generation therapeutic monoclonal antibodies, of which there are currently more than 300 in clinical trials across several therapeutic areas. Therapeutic antibody engineering examines all aspects of engineering monoclonal antibodies and analyses the effect that various genetic engineering approaches will have on future candidates. Chapters in the first part of the book provide an introduction to monoclonal antibodies, their discovery and development and the fundamental technologies used in their production. Following chapters cover a number of specific issues relating to different aspects of antibody engineering, including variable chain engineering, targets and mechanisms of action, classes of antibody and the use of antibody fragments, among many other topics. The last part of the book examines development issues, the interaction of human IgGs with non-human systems, and cell line development, before a conclusion looking at future issues affecting the field of therapeutic antibody engineering. - Goes beyond the standard engineering issues covered by most books and delves into structure-function relationships - Integration of knowledge across all areas of antibody engineering, development, and marketing - Discusses how current and future genetic engineering of cell lines will pave the way for much higher productivity
This unique volume reviews the beautiful architectures and varying mechanical actions of the set of specialized cellular proteins called molecular chaperones, which provide essential kinetic assistance to processes of protein folding and unfolding in the cell. Ranging from multisubunit ring-shaped chaperonin and Hsp100 machines that use their central cavities to bind and compartmentalize action on proteins, to machines that use other topologies of recognition — binding cellular proteins in an archway or at the surface of a 'clamp' or at the surface of a globular assembly — the structures show us the ways and means the cell has devised to assist its major effectors, proteins, to reach and maintain their unique active forms, as well as, when required, to disrupt protein structure in order to remodel or degrade. Each type of chaperone is beautifully illustrated by X-ray and EM structure determinations at near- atomic level resolution and described by a leader in the study of the respective family. The beauty of what Mother Nature has devised to accomplish essential assisting actions for proteins in vivo is fully appreciable.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.