In the three decades since the U.S. Environmental Protection Agency (EPA) was created, the agency's scientific and technical practices and credibility have been independently assessed many times in reports from the National Research Council (NRC), EPA Science Advisory Board, General Accounting Office, and many other organizations; in congressional oversight and judicial proceedings; and in countless criticisms and lawsuits from stakeholders with interests in particular EPA regulatory decisions. As a previous independent panel put it in the 1992 report Safeguarding the Future: Credible Science, Credible Decisions, EPA's policy and regulatory work receives a great deal of public attention, but the agency's scientific performance typically receives a similar degree of attention only when the scientific basis for a decision is questioned. Thus, strong scientific performance is important not only to enable EPA to make informed and effective decisions, but also to gain credibility and public support for the environmental protection efforts of EPA and the nation. This report is the fourth and final one in a series prepared by two independent expert committees convened by the NRC in response to a request from Congress and to subsequent, related requests from EPA. The Committee on Research Opportunities and Priorities for EPA-the companion committee in this study-was charged to provide an overview of significant emerging environmental issues, identify and prioritize research themes most relevant to understanding and resolving those issues, and consider the role of EPA's research program in the context of research being conducted or supported by other organizations. That committee published an interim report in 1996 and a final report, Building a Foundation for Sound Environmental Decisions, in 1997. The Committee on Research and Peer Review in EPA was charged to evaluate research management and scientific peer-review practices in the agency. The committee published an interim report in 1995 and this final report.
Matching DNA samples from crime scenes and suspects is rapidly becoming a key source of evidence for use in our justice system. DNA Technology in Forensic Science offers recommendations for resolving crucial questions that are emerging as DNA typing becomes more widespread. The volume addreses key issues: Quality and reliability in DNA typing, including the introduction of new technologies, problems of standardization, and approaches to certification. DNA typing in the courtroom, including issues of population genetics, levels of understanding among judges and juries, and admissibility. Societal issues, such as privacy of DNA data, storage of samples and data, and the rights of defendants to quality testing technology. Combining this original volume with the new update--The Evaluation of Forensic DNA Evidence--provides the complete, up-to-date picture of this highly important and visible topic. This volume offers important guidance to anyone working with this emerging law enforcement tool: policymakers, specialists in criminal law, forensic scientists, geneticists, researchers, faculty, and students.
Science is increasingly driven by data, and spatial data underpin the science directions laid out in the 2007 U.S. Geological Survey (USGS) Science Strategy. A robust framework of spatial data, metadata, tools, and a user community that is interactively connected to use spatial data in an efficient and flexible way-known as a spatial data infrastructure (SDI)-must be available for scientists and managers to find, use, and share spatial data both within and beyond the USGS. Over the last decade, the USGS has conducted breakthrough research that has overcome some of the challenges associated with implementing a large SDI. Advancing Strategic Science: A Spatial Data Infrastructure Roadmap for the U.S. Geological Survey is intended to ground those efforts by providing a practical roadmap to full implementation of an SDI to enable the USGS to conduct strategic science.
Science at the U.S. Geological Survey (USGS) is intrinsically global, and from early in its history, the USGS has successfully carried out international projects that serve U.S. national interests and benefit the USGS domestic mission. Opportunities abound for the USGS to strategically pursue international science in the next 5-10 years that bears on growing worldwide problems having direct impact on the United States-climate and ecosystem changes, natural disasters, the spread of invasive species, and diminishing natural resources, to name a few. Taking a more coherent, proactive agency approach to international science-and building support for international projects currently in progress-would help the USGS participate in international science activities more effectively.
The National Research Council was asked by the Centers for Disease Control and Prevention (CDC) to review the draft report of the National Cancer Institute (NCI)-CDC's working group charged with revising the 1985 radioepidemiological tables. To this end, a subcommittee was formed consisting of members of the Council's Committee on an Assessment of the Centers for Disease Control and Prevention Radiation Programs and other experts. The original tables were mandated under Public Law 97-414 (the "Orphan Drug Act") and were intended to provide a means of estimating the probability that a person who developed any of a series of radiation-related cancers, developed the cancer as a result of a specific radiation dose received before the onset of the cancer. The mandate included a provision for periodic updating of the tables. The motivation for the current revision reflects the availability of new data, especially on cancer incidence, and new methods of analysis, and the need for a more thorough treatment of uncertainty in the estimates than was attempted in the original tables.
New National Ambient Air Quality Standards for airborne particles smaller than 2.5 micrometers, called PM2.5, were issued by the U.S. Environmental Protection Agency (EPA) amidst scientific uncertainty and controversy. In response to a request from Congress, Research Priorities for Airborne Particulate Matter, the first of four books in a series, offers a conceptual framework for an integrated national program of particulate-matter research, identifies the 10 most critical research needs linked to key policy-related scientific uncertainties, and describes the recommended timing and estimated costs of such research. The committee concludes that EPA should devote more resources to investigating the relationships between fixed-site outdoor monitoring data and actual human breathing-zone exposures to ambient particulate matter and to identifying the most biologically important constituents and characteristics of particulate matter through toxicological studies. The recommended research activities are critical to determining actual exposures of human subpopulations most susceptible to harm from the most hazardous constituents of particulate matter. Future research will be an investment in public health and a means to ensure that resources spent on control technology and regulatory compliance will have a reasonable probability of success.
In 1986, officials of the US Department of Energy revealed that the Hanford Atomic Products Operations in Richland, Washington, had been releasing radioactive material, in particular iodine-131, into the environment over a period of years. This information, which confirmed the suspicions of some people in the Pacific Northwest about what they called the Hanford Reservation or just Hanford, created quite a stir. Both the US Congress and citizens of the Northwest became keenly interested in knowing whether these radiation releases had caused human health effects. They were particularly concerned about whether Hanford releases of iodine-131 had led to an increase in thyroid disease among the population of the area. In 1988, Congress ordered a study of the human health effects of exposure to the iodine-131 released from Hanford. Funded by the Centers for Disease Control and Prevention (CDC), the study was carried out by the Seattle-based Fred Hutchinson Cancer Research Center over the last decade. The study examined estimate of exposure of the thyroid and rates of thyroid disease because iodine-131 concentrates in the thyroid and that organ would be the best indicator of radiation damage in the population. The Centers for Disease Control and Prevention (CDC) asked the National Academy of Sciences-National Research Council (NAS-NRC) to give an independent appraisal of the study methodology, results, and interpretation and of the communication of the study results to the public. Review of the Hanford Thyroid Disease Study Draft Final Report constitutes the response of the NRC subcommittee to that request. To respond to the charge, the NRC subcommittee felt that it needed to go beyond the specific questions addressed to it by CDC and develop a broad understanding and critique of the HTDS and the Draft Final Report. As part of those activities, the subcommittee solicited comments from outside experts and members of the public primarily in a public meeting held in Spokane, Washington, in June 1999, where 14 scientists and members of the public made formal presentations to the subcommittee about various aspects of the Draft Final Report. Other members of the public also spoke during four open-comment sessions at the meeting. In addition, efforts were made to evaluate all information materials prepared for the public and additional CDC communication plans. Information was gathered through interviews with journalists, members of concerned citizen groups in the Hanford region, members of the CDC scientific and media staff in Atlanta, and the HTDS investigators. In this summary, the main points follow the structure of our report and are presented under several headings: epidemiologic and clinical methods and data collection, dosimetry, statistical analyses, statistical power and interpretation of the study, and communication of the study results to the public. We then provide a brief synopsis of our response to the questions raised by CDC.
During the 1950s, with the Cold War looming, military planners sought to know more about how to keep fighting forces fit and capable in the harsh Alaskan environment. In 1956 and 1957, the U.S. Air Force's former Arctic Aeromedical Laboratory conducted a study of the role of the thyroid in human acclimatization to cold. To measure thyroid function under various conditions, the researchers administered a radioactive medical trace, Iodine-131, to Alaska Natives and white military personnel; based on the study results, the researchers determined that the thyroid did not play a significant role in human acclimatization to cold. When this study of thyroid function was revisited at a 1993 conference on the Cold War legacy in the Arctic, serious questions were raised about the appropriateness of the activityâ€"whether it posed risks to the people involved and whether the research had been conducted within the bounds of accepted guidelines for research using human participants. In particular, there was concern over the relatively large proportion of Alaska Natives used as subjects and whether they understood the nature of the study. This book evaluates the research in detail, looking at both the possible health effects of Iodine-131 administration in humans and the ethics of human subjects research. This book presents conclusions and recommendations and is a significant addition to the nation's current reevaluation of human radiation experiments conducted during the Cold War.
The obligation to treat animals used in research ethically and humanely extends beyond their lives in the laboratory to include their transportation from place to place. Yet transporting animals is a highly regulated and complex process that raises many difficult issues. To examine these issues, the Roundtable on Science and Welfare in Laboratory Animal Use held a workshop on September 3-4, 2014, in Washington, DC. More than 200 people participated in the workshop in person and online, including representatives of academic research institutions, pharmaceutical and consumer product companies, government agencies, research advocacy groups, professional associations, and the public. The workshop was designed to draw attention to the essential thoughtful journey planning behind each transport of laboratory animals.
This book identifies accumulated environmental, social and economic effects of oil and gas leasing, exploration, and production on Alaska's North Slope. Economic benefits to the region have been accompanied by effects of the roads, infrastructure and activies of oil and gas production on the terrain, plants, animals and peoples of the North Slope. While attempts by the oil industry and regulatory agencies have reduced many of the environmental effects, they have not been eliminated. The book makes recommendations for further environmental research related to environmental effects.
Geoscience data and collections (such as, rock and sediment cores, geophysical data, engineering records, and fossils) are necessary for industries to discover and develop domestic natural resources to fulfill the nation's energy and mineral requirements and to improve the prediction of immediate and long term hazards, such as land slides, volcanic eruptions and global climate change. While the nation has assembled a wealth of geoscience data and collections, their utility remains incompletely tapped. Many could act as invaluable resources in the future but immediate action is needed if they are to remain available. Housing of and access to geoscience data and collections have become critical issues for industry, federal and state agencies, museums, and universities. Many resources are in imminent danger of being lost through mismanagement, neglect, or disposal. A striking 46 percent of the state geological surveys polled by the committee reported that there is no space available or they have refused to accept new material. In order to address these challenges, Geoscience Data and Collections offers a comprehensive strategy for managing geoscience data and collections in the United States.
Matching DNA samples from crime scenes and suspects is rapidly becoming a key source of evidence for use in our justice system. DNA Technology in Forensic Science offers recommendations for resolving crucial questions that are emerging as DNA typing becomes more widespread. The volume addreses key issues: Quality and reliability in DNA typing, including the introduction of new technologies, problems of standardization, and approaches to certification. DNA typing in the courtroom, including issues of population genetics, levels of understanding among judges and juries, and admissibility. Societal issues, such as privacy of DNA data, storage of samples and data, and the rights of defendants to quality testing technology. Combining this original volume with the new update--The Evaluation of Forensic DNA Evidence--provides the complete, up-to-date picture of this highly important and visible topic. This volume offers important guidance to anyone working with this emerging law enforcement tool: policymakers, specialists in criminal law, forensic scientists, geneticists, researchers, faculty, and students.
This report assesses whether the Smithsonian Institution should continue to receive direct federal appropriations for its scientific research programs or if this funding should be transferred to a peer-reviewed program open to all researchers in another agency. The report concludes that the National Museum of Natural History, the National Zoological Park, and the Smithsonian Center for Materials Research and Education in Suitland should remain exempt from having to compete for federal research dollars because they make unique contributions to the scientific and museum communities. Three other Smithsonian research programs should continue to receive federal funding since they are performing science of the highest quality and already compete for much of their government research money.
This newly revised edition incorporates the regulatory requirements and improved practices for laboratory animal care that have developed over the past two decades. The volume covers: Selection of dogs as research models. Design, construction, and maintenance of facilities. Temperature, humidity, food, water, bedding, sanitation, animal identification, record keeping, and transportation. General veterinary care, as well as special care of breeding animals and random-source animals. Laboratory Animal Management: Dogs examines controversies over proper cage sizes and interpretation of federal requirements for exercise and offers recommendations for researchers. Guidelines are provided on how to recognize and alleviate pain and distress in research dogs and on the sensitive topic of euthanasia. Laboratory Animal Management: Dogs discusses how to assemble a proper research protocol and how to handle conflicts. Outlined are procedures for institutional animal care and use and committee review. The volume also presents guidelines for handling aging dogs, use of radiation in experiments, and a wide range of other special circumstances. Thoroughly referenced, this guide will be indispensable to researchers, research administrators, review committees, and others concerned about laboratory dogs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.