The book under review is an interesting elaboration that fills the gaps in libraries for concisely written and student-friendly books about essentials in computer science … I recommend this book for anyone who would like to study algorithms, learn a lot about computer science or simply would like to deepen their knowledge … The book is written in very simple English and can be understood even by those with limited knowledge of the English language. It should be emphasized that, despite the fact that the book consists of many examples, mathematical formulas and theorems, it is very hard to find any mistakes, errors or typos.'zbMATHIn computer science, an algorithm is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing and automated reasoning tasks.As an effective method, an algorithm can be expressed within a finite amount of space and time and in a well-defined formal language for calculating a function. Starting from an initial state and initial input (perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing 'output' and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.This book introduces a set of concepts in solving problems computationally such as Growth of Functions; Backtracking; Divide and Conquer; Greedy Algorithms; Dynamic Programming; Elementary Graph Algorithms; Minimal Spanning Tree; Single-Source Shortest Paths; All Pairs Shortest Paths; Flow Networks; Polynomial Multiplication, to ways of solving NP-Complete Problems, supported with comprehensive, and detailed problems and solutions, making it an ideal resource to those studying computer science, computer engineering and information technology.
This book provides a broad introduction to some of the most fascinating and beautiful areas of discrete mathematical structures. It starts with a chapter on sets and goes on to provide examples in logic, applications of the principle of inclusion and exclusion and finally the pigeonhole principal. Computational techniques including the principle of mathematical introduction are provided, as well as a study on elementary properties of graphs, trees and lattices. Some basic results on groups, rings, fields and vector spaces are also given, the treatment of which is intentionally simple since such results are fundamental as a foundation for students of discrete mathematics. In addition, some results on solutions of systems of linear equations are discussed./a
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.