This work is written to provide a qualitative introduction, appropriate for a general science audience, to the application of pragmagnetic resonance to the determination of biomolecular dynamics. The work is also intended as a reference resource for those pursuing or contemplating research in the hydrodynamics. The work is also intended as a reference resource for those pursuing or contemplating research in the hydrodynamic characterization of components of Biosystems. Thus, the Introduction, Theory, and Methodology sections involve presentations at two levels a pictorial and intuitive presentation for the generalist and a quantitative presentation for the specialist. The sections on applications provide a critical discussion of both pure and applied research applications which yields insights into both the capabilities and limitations of the methodology. The applications sections are also of interest from the standpoint of the detailed characterization of certain Biosystems, such as erythrocytes, which have evolved from EPR measurements.
This definitive guide to modern organic electro-optic and photonic technologies provides critical insight into recent advances in organic electro-optic materials, from the underlying quantum and statistical concepts through to the practical application of materials in modern devices and systems. • Introduces theoretical and experimental methods for improving organic electro-optic and photonic technologies • Reviews the central concepts of nonlinear optics, focusing on multi-scale theoretical methods • Provides clear insight into the structure and function relationships critical to optimizing the performance of devices based on organic electro-optic materials. Serving as a primer for the systematic nano-engineering of soft matter materials, this is an invaluable resource for those involved in the development of modern telecommunication, computing, and sensing technologies depending on electro-optic technology. It is also an indispensable work of reference for academic researchers and graduate students in the fields of chemistry, physics, electrical engineering, materials science and engineering, and chemical engineering.
This definitive guide to modern organic electro-optic and photonic technologies provides critical insight into recent advances in organic electro-optic materials, from the underlying quantum and statistical concepts through to the practical application of materials in modern devices and systems. • Introduces theoretical and experimental methods for improving organic electro-optic and photonic technologies • Reviews the central concepts of nonlinear optics, focusing on multi-scale theoretical methods • Provides clear insight into the structure and function relationships critical to optimizing the performance of devices based on organic electro-optic materials. Serving as a primer for the systematic nano-engineering of soft matter materials, this is an invaluable resource for those involved in the development of modern telecommunication, computing, and sensing technologies depending on electro-optic technology. It is also an indispensable work of reference for academic researchers and graduate students in the fields of chemistry, physics, electrical engineering, materials science and engineering, and chemical engineering.
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.