An introduction to state-of-the-art experimental design approaches to better understand and interpret repeated measurement data in cross-over designs. Repeated Measurements and Cross-Over Designs: Features the close tie between the design, analysis, and presentation of results Presents principles and rules that apply very generally to most areas of research, such as clinical trials, agricultural investigations, industrial procedures, quality control procedures, and epidemiological studies Includes many practical examples, such as PK/PD studies in the pharmaceutical industry, k-sample and one sample repeated measurement designs for psychological studies, and residual effects of different treatments in controlling conditions such as asthma, blood pressure, and diabetes. Utilizes SAS(R) software to draw necessary inferences. All SAS output and data sets are available via the book's related website. This book is ideal for a broad audience including statisticians in pre-clinical research, researchers in psychology, sociology, politics, marketing, and engineering.
Practical Statistical Methods: A SAS Programming Approach presents a broad spectrum of statistical methods useful for researchers without an extensive statistical background. In addition to nonparametric methods, it covers methods for discrete and continuous data. Omitting mathematical details and complicated formulae, the text provides SAS program
Combinatorial mathematicians and statisticians have made a wide range of contributions to the development of block designs, and this book brings together much of that work. The designs developed for a specific problem are used in a variety of different settings. Applications include controlled sampling, randomized response, validation and valuation studies, intercropping experiments, brand cross-effect designs, lotto and tournaments. The intra- and inter- block, nonparametric and covariance analysis are discussed for general block designs, and the concepts of connectedness, orthogonality, and all types of balances in designs are carefully summarized. Readers are also introduced to the designs currently playing a prominent role in the field: alpha designs, trend-free designs, balanced treatment-control designs, nearest neighbor designs, and nested designs. This book provides the important background results required by researchers in block designs and related areas and prepares them for more complex research on the subject.
An introduction to state-of-the-art experimental design approaches to better understand and interpret repeated measurement data in cross-over designs. Repeated Measurements and Cross-Over Designs: Features the close tie between the design, analysis, and presentation of results Presents principles and rules that apply very generally to most areas of research, such as clinical trials, agricultural investigations, industrial procedures, quality control procedures, and epidemiological studies Includes many practical examples, such as PK/PD studies in the pharmaceutical industry, k-sample and one sample repeated measurement designs for psychological studies, and residual effects of different treatments in controlling conditions such as asthma, blood pressure, and diabetes. Utilizes SAS(R) software to draw necessary inferences. All SAS output and data sets are available via the book's related website. This book is ideal for a broad audience including statisticians in pre-clinical research, researchers in psychology, sociology, politics, marketing, and engineering.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.