Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.
Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. Currently, a technical in-depth book on this subject is unavailable, which has a similar detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink By providing an all-encompassing self-contained treatment this volume will appeal to a wide readership, as it is both an easy-reading textbook and a high-level research monograph.
Providing an all-encompassing self-contained treatment of Near-Capacity Multi-Functional MIMO Systems , the book starts by categorizing the family of Multiple-Input Multiple-Output (MIMO) schemes as diversity techniques, multiplexing schemes, multiple access arrangements and beam-forming techniques. Sophisticated coherent and low-complexity non-coherent MIMO receivers dispensing with channel estimation are considered in both classic and cooperation-aided scenarios. It is demonstrated that in the presence of correlated shadow-fading, cooperation-assisted systems may be expected to outperform their non-cooperative counterparts. The book contains a 100-page chapter on the unified treatment of all block codes in the context of high-flexibility, cutting-edge irregular Linear Dispersion Codes (LDC), which approach the MIMO-capacity. The majority of the book’s solutions are in the optimum sphere-packing frame-work. Sophisticated amalgam of five year’s near-capacity MIMO research Detailed examination of wireless landscape, including the fields of channel coding, spacetime coding and turbo detection techniques Novel tool of Extrinsic Information Transfer Charts (EXIT) used to address recent developments Material presented logically, allowing advanced readers to turn directly to any specific chapter of interest One of the only books to cover these subjects, giving equal weighting to each
Recent developments such as the invention of powerful turbo-decoding and irregular designs, together with the increase in the number of potential applications to multimedia signal compression, have increased the importance of variable length coding (VLC). Providing insights into the very latest research, the authors examine the design of diverse near-capacity VLC codes in the context of wireless telecommunications. The book commences with an introduction to Information Theory, followed by a discussion of Regular as well as Irregular Variable Length Coding and their applications in joint source and channel coding. Near-capacity designs are created using Extrinsic Information Transfer (EXIT) chart analysis. The latest techniques are discussed, outlining radical concepts such as Genetic Algorithm (GA) aided construction of diverse VLC codes. The book concludes with two chapters on VLC-based space-time transceivers as well as on frequency-hopping assisted schemes, followed by suggestions for future work on the topic. Surveys the historic evolution and development of VLCs Discusses the very latest research into VLC codes Introduces the novel concept of Irregular VLCs and their application in joint-source and channel coding
MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative Communications. This monograph collates the latest techniques in a number of specific design areas of turbo-detected MIMO-OFDM wireless systems. As a result a wide range of topical subjects are examined, including channel coding and multiuser detection (MUD), with a special emphasis on optimum maximum-likelihood (ML) MUDs, reduced-complexity genetic algorithm aided near-ML MUDs and sphere detection. The benefits of spreading codes as well as joint iterative channel and data estimation are only a few of the radical new features of the book. Also considered are the benefits of turbo and LDPC channel coding, the entire suite of known joint coding and modulation schemes, space-time coding as well as SDM/SDMA MIMOs within the context of various application examples. The book systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems; the depth of discussions increases towards the end of the book. Discusses many state-of-the-art topics important to today's wireless communications engineers. Includes numerous complete system design examples for the industrial practitioner. Offers a detailed portrayal of sphere detection. Based on over twenty years of research into OFDM in the context of various applications, subsequently presenting comprehensive bibliographies.
Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.
Providing an all-encompassing self-contained treatment of Near-Capacity Multi-Functional MIMO Systems , the book starts by categorizing the family of Multiple-Input Multiple-Output (MIMO) schemes as diversity techniques, multiplexing schemes, multiple access arrangements and beam-forming techniques. Sophisticated coherent and low-complexity non-coherent MIMO receivers dispensing with channel estimation are considered in both classic and cooperation-aided scenarios. It is demonstrated that in the presence of correlated shadow-fading, cooperation-assisted systems may be expected to outperform their non-cooperative counterparts. The book contains a 100-page chapter on the unified treatment of all block codes in the context of high-flexibility, cutting-edge irregular Linear Dispersion Codes (LDC), which approach the MIMO-capacity. The majority of the book’s solutions are in the optimum sphere-packing frame-work. Sophisticated amalgam of five year’s near-capacity MIMO research Detailed examination of wireless landscape, including the fields of channel coding, spacetime coding and turbo detection techniques Novel tool of Extrinsic Information Transfer Charts (EXIT) used to address recent developments Material presented logically, allowing advanced readers to turn directly to any specific chapter of interest One of the only books to cover these subjects, giving equal weighting to each
Since the publication of Wireless Video Communications five years ago, the area of video compression and wireless transceivers has evolved even further. This new edition addresses a range of recent developments in these areas, giving cognizance to the associated transmission aspects and issues of error resilience. Video Compression and Communications has been updated and condensed yet remains all-encompassing, giving a comprehensive overview of the subject. Covering compression issues, coding delay, implementational complexity and bitrate, the book also looks at the historical perspective to video communication. New edition of successful and informative text, Wireless Video Communications Substantial new material has been added on areas such as H.264, MPEG4 coding and transceivers Clear presentation and broad scope make it essential for anyone interested in wireless communications Systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems. This book is ideal for postgraduates and researchers in communication systems but will also be a valuable reference to undergraduates, development and systems engineers of video compression applications as well as industrialists, managers and visual communications practitioners.
This volume is dedicated to a range of CDMA and MC-CDMA transmission aspects of systems designed for communicating over fading wireless channels. Currently, a technical in-depth book on this subject, which has a similar detailed exposure of the recent advances in CDMA, M-ary CDMA and MC-CDMA, is unavailable. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into five main parts: Part I: provides a detailed introduction to the subject of CDMA systems designed for employment in various application Part II: deals with the currently hot topic of genetic algorithm assisted multiuser detection Part III: gives a detailed account of new, reduced-complexity M-ary CDMA schemes Part IV: considers a range of novel MC-CDMA schemes which have the potential of supporting numerous design objectives Part V: provides an overview of the 3G wireless system proposals and characterises the expected network capacity gains attained with the aid of adaptive CDMA systems By providing an all-encompassing self-contained treatment this groundbreaking volume will have appeal to researchers, postgraduate students, academics practising research and development engineers working for wireless communications and computer networking companies, as well as senior undergraduate students and technical managers in the field.
Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. Currently, a technical in-depth book on this subject is unavailable, which has a similar detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink By providing an all-encompassing self-contained treatment this volume will appeal to a wide readership, as it is both an easy-reading textbook and a high-level research monograph.
MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative Communications. This monograph collates the latest techniques in a number of specific design areas of turbo-detected MIMO-OFDM wireless systems. As a result a wide range of topical subjects are examined, including channel coding and multiuser detection (MUD), with a special emphasis on optimum maximum-likelihood (ML) MUDs, reduced-complexity genetic algorithm aided near-ML MUDs and sphere detection. The benefits of spreading codes as well as joint iterative channel and data estimation are only a few of the radical new features of the book. Also considered are the benefits of turbo and LDPC channel coding, the entire suite of known joint coding and modulation schemes, space-time coding as well as SDM/SDMA MIMOs within the context of various application examples. The book systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems; the depth of discussions increases towards the end of the book. Discusses many state-of-the-art topics important to today's wireless communications engineers. Includes numerous complete system design examples for the industrial practitioner. Offers a detailed portrayal of sphere detection. Based on over twenty years of research into OFDM in the context of various applications, subsequently presenting comprehensive bibliographies.
Voice communications remains the most important facet of mobile radio services, which may be delivered over conventional fixed links, the Internet or wireless channels. This all-encompassing volume reports on the entire 50-year history of voice compression, on recent audio compression techniques and the protection as well as transmission of these signals in hostile wireless propagation environments. Audio and Voice Compression for Wireless and Wireline Communications, Second Edition is divided into four parts with Part I covering the basics, while Part II outlines the design of analysis-by-synthesis coding, including a 100-page chapter on virtually all existing standardised speech codecs. The focus of Part III is on wideband and audio coding as well as transmission. Finally, Part IV concludes the book with a range of very low rate encoding techniques, scanning a range of research-oriented topics. Fully updated and revised second edition of “Voice Compression and Communications”, expanded to cover Audio features Includes two new chapters, on narrowband and wideband AMR coding, and MPEG audio coding Addresses the new developments in the field of wideband speech and audio compression Covers compression, error resilience and error correction coding, as well as transmission aspects, including cutting-edge turbo transceivers Presents both the historic and current view of speech compression and communications. Covering fundamental concepts in a non-mathematical way before moving to detailed discussions of theoretical principles, future concepts and solutions to various specific wireless voice communication problems, this book will appeal to both advanced readers and those with a background knowledge of signal processing and communications.
In the era of third-generation (3G) wireless personal communications standards - despite the emergence of broadband access network standard proposals, the most important mobile radio services are still based on voice communications. Even when the predicted surge of wireless data and Internet services becomes a reality, voice remains the most natural means of human communication, although this may be delivered via the Internet, predominantly after compression. Voice Compression and Communications is dedicated to voice compression issues while covering the aspects of error resilience, coding delay, implementation complexity and bitrate, characterizing many different speech codes incorporated in source-sensitivity matched wireless transceivers. Following the overview of the recent history of speech compression and communications, the book provides the reader with an historical perspective, commencing with a rudimentary introduction to communications aspects, since the expected performance of various speech codes are studied in the context of a full wireless transceiver.
3G, HSPA and FDD versus TDD Networking, Second Edition is the only book that contrasts the network capacity gains that may be achieved with the advent of adaptive antenna arrays and HSDPA-style adaptive modulation techniques in the context of FDD and TDD CDMA cellular networks. In the five years since the first edition of this book was published the wireless landscape has evolved further. The new book addresses the recent developments in the field of HSDPA-style wireless networking, focusing particularly on the issues and challenges of FDD versus TDD networking. These solutions are particularly powerful in shadow-faded scenarios, when the antenna array elements experience correlated, rather than independent fading. Furthermore, the flexible up-link/down-link time-slot allocation of TDD is beneficial for supporting the Wireless Internet, but results in erratic interference fluctuations, which is efficiently combated by the antenna arrays and adaptive modulation. Additionally, whilst the adaptive modulation aided system simply drops the instantaneous transmission rate during instances of high interference, conventional networks would drop the call. Builds on successful previous edition to include recent developments in the field of HSDPA-style wireless networking Provides an all-encompassing self-contained overview of the subject for a wide range of readers of all levels. Treats the topics of both physical-layer and network-layer aspects of wireless systems using a cross-layer optimization approach. One of the first books to contrast in detail both FDD and TDD networking. The material is presented clearly and logically allowing the uninitiated reader to commence reading it at fundamental non-mathematical conceptual level at the beginning of the book, while advanced readers can turn directly to the required chapter describing solutions to a number of wireless FDD or TDD networking problems. This book will inspire researchers, practicing engineers, operators, marketing engineers and advanced postgraduates.
Recent developments such as the invention of powerful turbo-decoding and irregular designs, together with the increase in the number of potential applications to multimedia signal compression, have increased the importance of variable length coding (VLC). Providing insights into the very latest research, the authors examine the design of diverse near-capacity VLC codes in the context of wireless telecommunications. The book commences with an introduction to Information Theory, followed by a discussion of Regular as well as Irregular Variable Length Coding and their applications in joint source and channel coding. Near-capacity designs are created using Extrinsic Information Transfer (EXIT) chart analysis. The latest techniques are discussed, outlining radical concepts such as Genetic Algorithm (GA) aided construction of diverse VLC codes. The book concludes with two chapters on VLC-based space-time transceivers as well as on frequency-hopping assisted schemes, followed by suggestions for future work on the topic. Surveys the historic evolution and development of VLCs Discusses the very latest research into VLC codes Introduces the novel concept of Irregular VLCs and their application in joint-source and channel coding
Covering the full range of channel codes from the most conventional through to the most advanced, the second edition of Turbo Coding, Turbo Equalisation and Space-Time Coding is a self-contained reference on channel coding for wireless channels. The book commences with a historical perspective on the topic, which leads to two basic component codes, convolutional and block codes. It then moves on to turbo codes which exploit iterative decoding by using algorithms, such as the Maximum-A-Posteriori (MAP), Log-MAP and Soft Output Viterbi Algorithm (SOVA), comparing their performance. It also compares Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) and Iterative BICM (BICM-ID) under various channel conditions. The horizon of the content is then extended to incorporate topics which have found their way into diverse standard systems. These include space-time block and trellis codes, as well as other Multiple-Input Multiple-Output (MIMO) schemes and near-instantaneously Adaptive Quadrature Amplitude Modulation (AQAM). The book also elaborates on turbo equalisation by providing a detailed portrayal of recent advances in partial response modulation schemes using diverse channel codes. A radically new aspect for this second edition is the discussion of multi-level coding and sphere-packing schemes, Extrinsic Information Transfer (EXIT) charts, as well as an introduction to the family of Generalized Low Density Parity Check codes. This new edition includes recent advances in near-capacity turbo-transceivers as well as new sections on multi-level coding schemes and of Generalized Low Density Parity Check codes Comparatively studies diverse channel coded and turbo detected systems to give all-inclusive information for researchers, engineers and students Details EXIT-chart based irregular transceiver designs Uses rich performance comparisons as well as diverse near-capacity design examples
Of Non-Wraparound Network Performance -- Wrap-around Network Performance Results -- Performance Results over a LOS Channel -- Performance Results over a Multipath Channel -- Performance over a Multipath Channel using Power Control -- Performance of an AQAM based Network using Power Control -- UTRA, Adaptive Arrays and Adaptive Modulation -- Direct Sequence Code Division Multiple Access -- UMTS Terrestrial Radio Access -- Spreading and Modulation -- Common Pilot Channel -- Power Control -- Uplink Power Control -- Downlink Power Control -- Soft Handover -- Signal-to-Interference plus Noise Ratio Calculations -- Downlink -- Uplink -- Multi-User Detection -- Simulation Results -- Simulation Parameters -- The Effect of Pilot Power on Soft Handover Results -- Fixed Received Pilot Power Thresholds without Shadowing -- Fixed Received Pilot Power Thresholds with 0.5 Hz Shadowing -- Fixed Received Pilot Power Thresholds with 1.0 Hz Shadowing -- Relative Received Pilot Power Thresholds without Shadowing -- Relative Received Pilot Power Thresholds with 0.5 Hz Shadowing -- Relative Received Pilot Power Thresholds with 1.0 Hz Shadowing -- E[subscript c]/I[subscript o] Power Based Soft Handover Results -- Fixed E[subscript c]/I[subscript o] Thresholds without Shadowing -- Fixed E[subscript c]/I[subscript o] Thresholds with 0.5 Hz Shadowing -- Fixed E[subscript c]/I[subscript o] Thresholds with 1.0 Hz Shadowing -- Relative E[subscript c]/I[subscript o] Thresholds without Shadowing.
Turbo coding has opened an exciting new chapter in the design of iterative detection assisted communication systems. Similar dramatic advances have been achieved with the advent of space time coding, when communicating over dispersive fading wireless channels. By assuming no prior knowledge in the field of channel coding, the authors provide a self-contained reference on these stimulating hot topics, concluding at an advanced level. This essential volume is divided into five key parts: 1. Convolutional and Block Coding Introduces the family of convolutional codes, hard and soft-decision Viterbi algorithms and the most prominent classes of block codes, namely Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, as well as their algebraic and trellis-decoding. 2. Turbo Convolutional and Turbo Block Coding Introduces turbo convolutional codes and details the Maximum A-Posteriori (MAP), Log-MAP and Max-Log-MAP as well as the Soft Output Viterbi Algorithm (SOVA). Investigates the effects of the various turbo codec parameters. Studies the super-trellis structure of turbo codes and characterises turbo BCH codes. Portrays Redundant Residue Number System (RRNS) based codes and their turbo decoding. 3. Coded Modulation: TCM, TTCM, BICM, BICM-ID Studies Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM), Iterative BICM (BICM-ID) and compares them under various channel conditions. 4. Space-Time Block and Space-Time Trellis Coding Introduces space-time codes and studies their performance using numerous channel codecs providing guidelines for system designers. Studies Multiple-Input Multiple-Output (MIMO) based schemes and the concept of near-instantaneously Adaptive Quadrature Amplitude Modulation (AQAM) combined with near-instantaneously adaptive turbo channel coding. 5. Turbo Equalisation Covers the principle in detail, provides theoretical performance bounds for turbo equalisers and includes a study of various turbo equaliser arrangements. Also addresses the problem of reduced implementation complexity and covers turbo equalised space-time trellis codes. If you are looking for a comprehensive treatment covering both classic channel coding techniques and recent advances in this field, then this is the book for you. Researchers, practising engineers and advanced students will all find it both informative and stimulating.
Numerous wireless systems have adopted MIMOs(Multiple-in & Multiple-out smart antennas), yet no comprehensive book which examines MIMO-aided transceiver synchronization issues exists. This book thoroughly investigates and analysis performance characteristics of various code acquisition schemes including Single-Carrier (SC) and Multi-Carrier (MC) Code Division Multiple Access schemes. This book also discuss the clock- and carrier-synchronization of both classic single-Carrier and multi-carrier OFDM systems, which found their way into both the 3rd generation LTE and another set of wireless communication IEEE standards (WiFi, WiMax, etc.)
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.